We present a method for learning an embedding that places images of humans in
similar poses nearby. This embedding can be used as a direct method of
comparing images based on human pose, avoiding potential challenges of
estimating body joint positions. Pose embedding learning is formulated under a
triplet-based distance criterion. A deep architecture is used to allow learning
of a representation capable of making distinctions between different poses.
Experiments on human pose matching and retrieval from video data demonstrate
the potential of the method