567 research outputs found

    SUPERT: Towards New Frontiers in Unsupervised Evaluation Metrics for Multi-Document Summarization

    Full text link
    We study unsupervised multi-document summarization evaluation metrics, which require neither human-written reference summaries nor human annotations (e.g. preferences, ratings, etc.). We propose SUPERT, which rates the quality of a summary by measuring its semantic similarity with a pseudo reference summary, i.e. selected salient sentences from the source documents, using contextualized embeddings and soft token alignment techniques. Compared to the state-of-the-art unsupervised evaluation metrics, SUPERT correlates better with human ratings by 18-39%. Furthermore, we use SUPERT as rewards to guide a neural-based reinforcement learning summarizer, yielding favorable performance compared to the state-of-the-art unsupervised summarizers. All source code is available at https://github.com/yg211/acl20-ref-free-eval.Comment: ACL 202

    A Survey of Word Reordering in Statistical Machine Translation: Computational Models and Language Phenomena

    Get PDF
    Word reordering is one of the most difficult aspects of statistical machine translation (SMT), and an important factor of its quality and efficiency. Despite the vast amount of research published to date, the interest of the community in this problem has not decreased, and no single method appears to be strongly dominant across language pairs. Instead, the choice of the optimal approach for a new translation task still seems to be mostly driven by empirical trials. To orientate the reader in this vast and complex research area, we present a comprehensive survey of word reordering viewed as a statistical modeling challenge and as a natural language phenomenon. The survey describes in detail how word reordering is modeled within different string-based and tree-based SMT frameworks and as a stand-alone task, including systematic overviews of the literature in advanced reordering modeling. We then question why some approaches are more successful than others in different language pairs. We argue that, besides measuring the amount of reordering, it is important to understand which kinds of reordering occur in a given language pair. To this end, we conduct a qualitative analysis of word reordering phenomena in a diverse sample of language pairs, based on a large collection of linguistic knowledge. Empirical results in the SMT literature are shown to support the hypothesis that a few linguistic facts can be very useful to anticipate the reordering characteristics of a language pair and to select the SMT framework that best suits them.Comment: 44 pages, to appear in Computational Linguistic

    Semi-Supervised Learning for Neural Keyphrase Generation

    Full text link
    We study the problem of generating keyphrases that summarize the key points for a given document. While sequence-to-sequence (seq2seq) models have achieved remarkable performance on this task (Meng et al., 2017), model training often relies on large amounts of labeled data, which is only applicable to resource-rich domains. In this paper, we propose semi-supervised keyphrase generation methods by leveraging both labeled data and large-scale unlabeled samples for learning. Two strategies are proposed. First, unlabeled documents are first tagged with synthetic keyphrases obtained from unsupervised keyphrase extraction methods or a selflearning algorithm, and then combined with labeled samples for training. Furthermore, we investigate a multi-task learning framework to jointly learn to generate keyphrases as well as the titles of the articles. Experimental results show that our semi-supervised learning-based methods outperform a state-of-the-art model trained with labeled data only.Comment: To appear in EMNLP 2018 (12 pages, 7 figures, 6 tables

    Introduction to the special issue on deep learning approaches for machine translation

    Get PDF
    Deep learning is revolutionizing speech and natural language technologies since it is offering an effective way to train systems and obtaining significant improvements. The main advantage of deep learning is that, by developing the right architecture, the system automatically learns features from data without the need of explicitly designing them. This machine learning perspective is conceptually changing how speech and natural language technologies are addressed. In the case of Machine Translation (MT), deep learning was first introduced in standard statistical systems. By now, end-to-end neural MT systems have reached competitive results. This special issue introductory paper addresses how deep learning has been gradually introduced in MT. This introduction covers all topics contained in the papers included in this special issue, which basically are: integration of deep learning in statistical MT; development of the end-to-end neural MT system; and introduction of deep learning in interactive MT and MT evaluation. Finally, this introduction sketches some research directions that MT is taking guided by deep learning.Peer ReviewedPostprint (published version

    Extended Parallel Corpus for Amharic-English Machine Translation

    Full text link
    This paper describes the acquisition, preprocessing, segmentation, and alignment of an Amharic-English parallel corpus. It will be useful for machine translation of an under-resourced language, Amharic. The corpus is larger than previously compiled corpora; it is released for research purposes. We trained neural machine translation and phrase-based statistical machine translation models using the corpus. In the automatic evaluation, neural machine translation models outperform phrase-based statistical machine translation models.Comment: Accepted to 2nd AfricanNLP workshop at EACL 202
    • …
    corecore