111,032 research outputs found

    Development and Calibration of an Eye-Tracking Fixation Identification Algorithm for Immersive Virtual Reality

    Full text link
    [EN] Fixation identification is an essential task in the extraction of relevant information from gaze patterns; various algorithms are used in the identification process. However, the thresholds used in the algorithms greatly affect their sensitivity. Moreover, the application of these algorithm to eye-tracking technologies integrated into head-mounted displays, where the subject's head position is unrestricted, is still an open issue. Therefore, the adaptation of eye-tracking algorithms and their thresholds to immersive virtual reality frameworks needs to be validated. This study presents the development of a dispersion-threshold identification algorithm applied to data obtained from an eye-tracking system integrated into a head-mounted display. Rules-based criteria are proposed to calibrate the thresholds of the algorithm through different features, such as number of fixations and the percentage of points which belong to a fixation. The results show that distance-dispersion thresholds between 1-1.6 degrees and time windows between0.25-0.4s are the acceptable range parameters, with 1 degrees and0.25s being the optimum. The work presents a calibrated algorithm to be applied in future experiments with eye-tracking integrated into head-mounted displays and guidelines for calibrating fixation identification algorithmsWe thank Pepe Roda Belles for the development of the virtual reality environment and the integration of the HMD with Unity platform. We also thank Masoud Moghaddasi for useful discussions and recommendations.Llanes-Jurado, J.; MarĂ­n-Morales, J.; Guixeres Provinciale, J.; Alcañiz Raya, ML. (2020). Development and Calibration of an Eye-Tracking Fixation Identification Algorithm for Immersive Virtual Reality. Sensors. 20(17):1-15. https://doi.org/10.3390/s20174956S1152017Cipresso, P., Giglioli, I. A. C., Raya, M. A., & Riva, G. (2018). The Past, Present, and Future of Virtual and Augmented Reality Research: A Network and Cluster Analysis of the Literature. Frontiers in Psychology, 9. doi:10.3389/fpsyg.2018.02086Chicchi Giglioli, I. A., Pravettoni, G., Sutil MartĂ­n, D. L., Parra, E., & Raya, M. A. (2017). A Novel Integrating Virtual Reality Approach for the Assessment of the Attachment Behavioral System. Frontiers in Psychology, 8. doi:10.3389/fpsyg.2017.00959MarĂ­n-Morales, J., Higuera-Trujillo, J. L., De-Juan-Ripoll, C., Llinares, C., Guixeres, J., Iñarra, S., & Alcañiz, M. (2019). Navigation Comparison between a Real and a Virtual Museum: Time-dependent Differences using a Head Mounted Display. Interacting with Computers, 31(2), 208-220. doi:10.1093/iwc/iwz018Kober, S. E., Kurzmann, J., & Neuper, C. (2012). Cortical correlate of spatial presence in 2D and 3D interactive virtual reality: An EEG study. International Journal of Psychophysiology, 83(3), 365-374. doi:10.1016/j.ijpsycho.2011.12.003Borrego, A., Latorre, J., Llorens, R., Alcañiz, M., & NoĂ©, E. (2016). Feasibility of a walking virtual reality system for rehabilitation: objective and subjective parameters. Journal of NeuroEngineering and Rehabilitation, 13(1). doi:10.1186/s12984-016-0174-1Clemente, M., RodrĂ­guez, A., Rey, B., & Alcañiz, M. (2014). Assessment of the influence of navigation control and screen size on the sense of presence in virtual reality using EEG. Expert Systems with Applications, 41(4), 1584-1592. doi:10.1016/j.eswa.2013.08.055Borrego, A., Latorre, J., Alcañiz, M., & Llorens, R. (2018). Comparison of Oculus Rift and HTC Vive: Feasibility for Virtual Reality-Based Exploration, Navigation, Exergaming, and Rehabilitation. Games for Health Journal, 7(3), 151-156. doi:10.1089/g4h.2017.0114Jensen, L., & Konradsen, F. (2017). A review of the use of virtual reality head-mounted displays in education and training. Education and Information Technologies, 23(4), 1515-1529. doi:10.1007/s10639-017-9676-0Jost, T. A., Drewelow, G., Koziol, S., & Rylander, J. (2019). A quantitative method for evaluation of 6 degree of freedom virtual reality systems. Journal of Biomechanics, 97, 109379. doi:10.1016/j.jbiomech.2019.109379Chandrasekera, T., Fernando, K., & Puig, L. (2019). Effect of Degrees of Freedom on the Sense of Presence Generated by Virtual Reality (VR) Head-Mounted Display Systems: A Case Study on the Use of VR in Early Design Studios. Journal of Educational Technology Systems, 47(4), 513-522. doi:10.1177/0047239518824862Bălan, O., Moise, G., Moldoveanu, A., Leordeanu, M., & Moldoveanu, F. (2020). An Investigation of Various Machine and Deep Learning Techniques Applied in Automatic Fear Level Detection and Acrophobia Virtual Therapy. Sensors, 20(2), 496. doi:10.3390/s20020496Armstrong, T., & Olatunji, B. O. (2012). Eye tracking of attention in the affective disorders: A meta-analytic review and synthesis. Clinical Psychology Review, 32(8), 704-723. doi:10.1016/j.cpr.2012.09.004Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 124(3), 372-422. doi:10.1037/0033-2909.124.3.372Irwin, D. E. (1992). Memory for position and identity across eye movements. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18(2), 307-317. doi:10.1037/0278-7393.18.2.307Tanriverdi, V., & Jacob, R. J. K. (2000). Interacting with eye movements in virtual environments. Proceedings of the SIGCHI conference on Human factors in computing systems - CHI ’00. doi:10.1145/332040.332443Skulmowski, A., Bunge, A., Kaspar, K., & Pipa, G. (2014). Forced-choice decision-making in modified trolley dilemma situations: a virtual reality and eye tracking study. Frontiers in Behavioral Neuroscience, 8. doi:10.3389/fnbeh.2014.00426Juvrud, J., GredebĂ€ck, G., Åhs, F., Lerin, N., Nyström, P., Kastrati, G., & RosĂ©n, J. (2018). The Immersive Virtual Reality Lab: Possibilities for Remote Experimental Manipulations of Autonomic Activity on a Large Scale. Frontiers in Neuroscience, 12. doi:10.3389/fnins.2018.00305Hessels, R. S., Niehorster, D. C., Nyström, M., Andersson, R., & Hooge, I. T. C. (2018). Is the eye-movement field confused about fixations and saccades? A survey among 124 researchers. Royal Society Open Science, 5(8), 180502. doi:10.1098/rsos.180502Diaz, G., Cooper, J., Kit, D., & Hayhoe, M. (2013). Real-time recording and classification of eye movements in an immersive virtual environment. Journal of Vision, 13(12), 5-5. doi:10.1167/13.12.5Duchowski, A. T., Medlin, E., Gramopadhye, A., Melloy, B., & Nair, S. (2001). Binocular eye tracking in VR for visual inspection training. Proceedings of the ACM symposium on Virtual reality software and technology - VRST ’01. doi:10.1145/505008.505010Lim, J. Z., Mountstephens, J., & Teo, J. (2020). Emotion Recognition Using Eye-Tracking: Taxonomy, Review and Current Challenges. Sensors, 20(8), 2384. doi:10.3390/s20082384Manor, B. R., & Gordon, E. (2003). Defining the temporal threshold for ocular fixation in free-viewing visuocognitive tasks. Journal of Neuroscience Methods, 128(1-2), 85-93. doi:10.1016/s0165-0270(03)00151-1Salvucci, D. D., & Goldberg, J. H. (2000). Identifying fixations and saccades in eye-tracking protocols. Proceedings of the symposium on Eye tracking research & applications - ETRA ’00. doi:10.1145/355017.355028Duchowski, A., Medlin, E., Cournia, N., Murphy, H., Gramopadhye, A., Nair, S., 
 Melloy, B. (2002). 3-D eye movement analysis. Behavior Research Methods, Instruments, & Computers, 34(4), 573-591. doi:10.3758/bf03195486Bobic, V., & Graovac, S. (2016). Development, implementation and evaluation of new eye tracking methodology. 2016 24th Telecommunications Forum (TELFOR). doi:10.1109/telfor.2016.7818800Sidenmark, L., & Lundström, A. (2019). Gaze behaviour on interacted objects during hand interaction in virtual reality for eye tracking calibration. Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications. doi:10.1145/3314111.3319815Alghamdi, N., & Alhalabi, W. (2019). Fixation Detection with Ray-casting in Immersive Virtual Reality. International Journal of Advanced Computer Science and Applications, 10(7). doi:10.14569/ijacsa.2019.0100710Blignaut, P. (2009). Fixation identification: The optimum threshold for a dispersion algorithm. Attention, Perception, & Psychophysics, 71(4), 881-895. doi:10.3758/app.71.4.881Shic, F., Scassellati, B., & Chawarska, K. (2008). The incomplete fixation measure. Proceedings of the 2008 symposium on Eye tracking research & applications - ETRA ’08. doi:10.1145/1344471.1344500Vive Pro Eyehttps://www.vive.com/us

    Comparative study of AR versus video tutorials for minor maintenance operations

    Full text link
    [EN] Augmented Reality (AR) has become a mainstream technology in the development of solutions for repair and maintenance operations. Although most of the AR solutions are still limited to specific contexts in industry, some consumer electronics companies have started to offer pre-packaged AR solutions as alternative to video-based tutorials (VT) for minor maintenance operations. In this paper, we present a comparative study of the acquired knowledge and user perception achieved with AR and VT solutions in some maintenance tasks of IT equipment. The results indicate that both systems help users to acquire knowledge in various aspects of equipment maintenance. Although no statistically significant differences were found between AR and VT solutions, users scored higher on the AR version in all cases. Moreover, the users explicitly preferred the AR version when evaluating three different usability and satisfaction criteria. For the AR version, a strong and significant correlation was found between the satisfaction and the achieved knowledge. Since the AR solution achieved similar learning results with higher usability scores than the video-based tutorials, these results suggest that AR solutions are the most effective approach to substitute the typical paper-based instructions in consumer electronics.This work has been supported by Spanish MINECO and EU ERDF programs under grant RTI2018-098156-B-C55.Morillo, P.; GarcĂ­a GarcĂ­a, I.; Orduña, JM.; FernĂĄndez, M.; Juan, M. (2020). Comparative study of AR versus video tutorials for minor maintenance operations. Multimedia Tools and Applications. 79(11-12):7073-7100. https://doi.org/10.1007/s11042-019-08437-9S707371007911-12Ahn J, Williamson J, Gartrell M, Han R, Lv Q, Mishra S (2015) Supporting healthy grocery shopping via mobile augmented reality. ACM Trans Multimedia Comput Commun Appl 12(1s):16:1–16:24. https://doi.org/10.1145/2808207Anderson TW (2011) Anderson–darling tests of goodness-of-fit. Springer, Berlin, pp 52–54. https://doi.org/10.1007/978-3-642-04898-2_118Awad N, Lewandowski SE, Decker EW (2015) Event management system for facilitating user interactions at a venue. US Patent App. 14/829,382Azuma R (1997) A survey of augmented reality. Presence: Teleoperators and Virtual Environments 6(4):355–385Baird K, Barfield W (1999) Evaluating the effectiveness of augmented reality displays for a manual assembly task. Virtual Reality 4:250–259Ballo P (2018) Hardware and software for ar/vr development. In: Augmented and virtual reality in libraries, pp 45–55. LITA guidesBarrile V, Fotia A, Bilotta G (2018) Geomatics and augmented reality experiments for the cultural heritage. Applied Geomatics. https://doi.org/10.1007/s12518-018-0231-5Billinghurst M, Duenser A (2012) Augmented reality in the classroom. Computer 45(7):56–63. https://doi.org/10.1109/MC.2012.111Bowman DA, McMahan RP (2007) Virtual reality: how much immersion is enough? Computer 40(7)Brown TA (2015) Confirmatory factor analysis for applied research. Guilford PublicationsDodge Y. (ed) (2008) Kruskal-Wallis test. Springer, New York. https://doi.org/10.1007/978-0-387-32833-1_216Elmunsyah H, Hidayat WN, Asfani K (2019) Interactive learning media innovation: utilization of augmented reality and pop-up book to improve user’s learning autonomy. J Phys Conf Ser 1193(012):031. https://doi.org/10.1088/1742-6596/1193/1/012031Entertainment L (2017) Dolphin Player. https://play.google.com/store/apps/details?id=com.broov.player. Online; Accessed 09-September-2017Fletcher J, Belanich J, Moses F, Fehr A, Moss J (2017) Effectiveness of augmented reality & augmented virtuality. In: MODSIM Modeling & simulation of systems and applications) world conferenceFraga-Lamas P, FernĂĄndez-CaramĂ©s TM, Blanco-Novoa O, Vilar-Montesinos MA (2018) A review on industrial augmented reality systems for the industry 4.0 shipyard. IEEE Access 6:13,358–13,375. https://doi.org/10.1109/ACCESS.2018.2808326FuriĂł D, Juan MC, SeguĂ­ I, VivĂł R (2015) Mobile learning vs. traditional classroom lessons: a comparative study. J Comput Assist Learn 31(3):189–201. https://doi.org/10.1111/jcal.12071Gavish N, GutiĂ©rrez T, Webel S, RodrĂ­guez J, Peveri M, Bockholt U, Tecchia F (2015) Evaluating virtual reality and augmented reality training for industrial maintenance and assembly tasks. Interact Learn Environ 23(6):778–798. https://doi.org/10.1080/10494820.2013.815221Gimeno J, Morillo P, Orduña JM, FernĂĄndez M (2013) A new ar authoring tool using depth maps for industrial procedures. Comput Ind 64(9):1263–1271. https://doi.org/10.1016/j.compind.2013.06.012Holzinger A, Kickmeier-Rust MD, Albert D (2008) Dynamic media in computer science education; content complexity and learning performance: is less more? Educational Technology & Society 11(1):279–290Hornbaek K (2013) Some whys and hows of experiments in human–computer interaction. Foundations and TrendsⓇ in Human–Computer Interaction 5(4):299–373. https://doi.org/10.1561/1100000043Huang J, Liu S, Xing J, Mei T, Yan S (2014) Circle & search: Attribute-aware shoe retrieval. ACM Trans Multimedia Comput Commun Appl 11 (1):3:1–3:21. https://doi.org/10.1145/2632165Jiang S, Wu Y, Fu Y (2018) Deep bidirectional cross-triplet embedding for online clothing shopping. ACM Trans Multimedia Comput Commun Appl 14(1):5:1–5:22. https://doi.org/10.1145/3152114Kim SK, Kang SJ, Choi YJ, Choi MH, Hong M (2017) Augmented-reality survey: from concept to application. KSII Transactions on Internet and Information Systems 11:982–1004. https://doi.org/10.3837/tiis.2017.02.019Langlotz T, Zingerle M, Grasset R, Kaufmann H, Reitmayr G (2012) Ar record&replay: Situated compositing of video content in mobile augmented reality. In: Proceedings of the 24th Australian Computer-Human Interaction Conference, OzCHI ’12. ACM, New York, pp 318–326, DOI https://doi.org/10.1145/2414536.2414588, (to appear in print)Martin-SanJose JF, Juan MC, MollĂĄ R, VivĂł R (2017) Advanced displays and natural user interfaces to support learning. Interact Learn Environ 25(1):17–34. https://doi.org/10.1080/10494820.2015.1090455Massey FJ (1951) The kolmogorov-Smirnov test for goodness of fit. J Am Stat Assoc 46(253):68–78van der Meij H, van der Meij J, Voerman T, Duipmans E (2018) Supporting motivation, task performance and retention in video tutorials for software training. Educ Technol Res Dev 66(3):597–614. https://doi.org/10.1007/s11423-017-9560-zvan der Meij J, van der Meij H (2015) A test of the design of a video tutorial for software training. J Comput Assist Learn 31 (2):116–132. https://doi.org/10.1111/jcal.12082Mestre LS (2012) Student preference for tutorial design: a usability study. Ref Serv Rev 40(2):258–276. https://doi.org/10.1108/00907321211228318Mohr P, Kerbl B, Donoser M, Schmalstieg D, Kalkofen D (2015) Retargeting technical documentation to augmented reality. In: Proceedings of the 33rd annual ACM conference on human factors in computing systems, CHI ’15. ACM, New York, pp 3337–3346, DOI https://doi.org/10.1145/2702123.2702490, (to appear in print)Mohr P, Mandl D, Tatzgern M, Veas E, Schmalstieg D, Kalkofen D (2017) Retargeting video tutorials showing tools with surface contact to augmented reality. In: Proceedings of the 2017 CHI conference on human factors in computing systems, CHI ’17. ACM, New York, pp 6547–6558, DOI https://doi.org/10.1145/3025453.3025688, (to appear in print)Montgomery DC, Runger GC (2003) Applied statistics and probability for engineers. Wiley, New YorkMorillo P, Orduña JM, Casas S, FernĂĄndez M (2019) A comparison study of ar applications versus pseudo-holographic systems as virtual exhibitors for luxury watch retail stores. Multimedia Systems. https://doi.org/10.1007/s00530-019-00606-yMorse JM (2000) Determining sample size. Qual Health Res 10(1):3–5. https://doi.org/10.1177/104973200129118183Muñoz-Montoya F, Juan M, Mendez-Lopez M, Fidalgo C (2019) Augmented reality based on slam to assess spatial short-term memory. IEEE Access 7:2453–2466. https://doi.org/10.1109/ACCESS.2018.2886627NeuhĂ€user M (2011) Wilcoxon–Mann–Whitney test. Springer, Berlin, pp 1656–1658Neumann U, Majoros A (1998) Cognitive, performance, and systems issues for augmented reality applications in manufacturing and maintenance. In: Inproceedings of the IEEE virtual reality annual international symposium (VR ’98), pp 4–11no JJA, Juan MC, Gil-GĂłmez JA, MollĂĄ R. (2014) A comparative study using an autostereoscopic display with augmented and virtual reality. Behaviour & Information Technology 33(6):646–655. https://doi.org/10.1080/0144929X.2013.815277Palmarini R, Erkoyuncu JA, Roy R, Torabmostaedi H (2018) A systematic review of augmented reality applications in maintenance. Robot Comput Integr Manuf 49:215–228Quint F, Loch F (2015) Using smart glasses to document maintenance processes. Mensch und Computer 2015–WorkshopbandRadkowski R, Herrema J, Oliver J (2015) Augmented reality-based manual assembly support with visual features for different degrees of difficulty. International Journal of Human–Computer Interaction 31(5):337–349. https://doi.org/10.1080/10447318.2014.994194Regenbrecht H, Schubert T (2002) Measuring presence in augmented reality environments: design and a first test of a questionnaire, Porto, PortugalRobertson J (2012) Likert-type scales, statistical methods, and effect sizes. Commun ACM 55(5):6–7. https://doi.org/10.1145/2160718.2160721RodrĂ­guez-AndrĂ©s D, Juan MC, MĂ©ndez-LĂłpez M, PĂ©rez-HernĂĄndez E, Lluch J (2016) Mnemocity task: Assessment of childrens spatial memory using stereoscopy and virtual environments. PLos ONE 1(8). https://doi.org/10.1371/journal.pone.0161858Sanna A, Manuri F, Lamberti F, Paravati G, Pezzolla P (2015) Using handheld devices to support augmented reality-based maintenance and assembly tasks. In: 2015 IEEE International conference on consumer electronics (ICCE), pp. 178–179. https://doi.org/10.1109/ICCE.2015.7066370Schmidt S, Ehrenbrink P, Weiss B, Voigt-Antons J, Kojic T, Johnston A, Moller S (2018) Impact of virtual environments on motivation and engagement during exergames. In: 2018 Tenth international conference on quality of multimedia experience (qoMEX), pp 1–6. https://doi.org/10.1109/QoMEX.2018.8463389Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52(3/4):591–611Tang A, Owen C, Biocca F, Mou W (2003) Comparative effectiveness of augmented reality in object assembly. In: Proceedings of the SIGCHI conference on human factors in computing systems, CHI ’03. ACM, New York, pp 73–80, DOI https://doi.org/10.1145/642611.642626, (to appear in print)TomĂĄs JM, Oliver A, Galiana L, Sancho P, Lila M (2013) Explaining method effects associated with negatively worded items in trait and state global and domain-specific self-esteem scales. Structural Equation Modeling: A Multidisciplinary Journal 20(2):299–313. https://doi.org/10.1080/10705511.2013.769394Uva AE, Gattullo M, Manghisi VM, Spagnulo D, Cascella GL, Fiorentino M (2017) Evaluating the effectiveness of spatial augmented reality in smart manufacturing: a solution for manual working stations. The Int J Adv Manuf Technol: 1–13Wang X, Ong SK, Nee AYC (2016) A comprehensive survey of augmented reality assembly research. Advances in Manufacturing 4(1):1–22. https://doi.org/10.1007/s40436-015-0131-4Westerfield G, Mitrovic A, Billinghurst M (2015) Intelligent augmented reality training for motherboard assembly. Int J Artif Intell Educ 25(1):157–172. https://doi.org/10.1007/s40593-014-0032-xWiedenmaier S, Oehme O, Schmidt L, Luczak H (2003) Augmented reality (ar) for assembly processes - design and experimental evaluation. International Journal of Human-Computer Interaction 16(3):497–514Witmer BG, Singer MJ (1998) Measuring presence in virtual environments: a presence questionnaire. Presence: Teleoperators and Virtual Environments 7(3):225–240Wu HK, Lee SWY, Chang HY, Liang JC (2013) Current status, opportunities and challenges of augmented reality in education. Computers & Education 62:41–49. https://doi.org/10.1016/j.compedu.2012.10.024Yim MYC, Chu SC, Sauer PL (2017) Is augmented reality technology an effective tool for e-commerce? an interactivity and vividness perspective. Journal of Interactive Marketing 39(http://www.sciencedirect.com/science/article/pii/S1094996817300336):89–103. https://doi.org/10.1016/j.intmar.2017.04.001Yuan ML, Ong SK, Nee AYC (2008) Augmented reality for assembly guidance using a virtual interactive tool. Int J Prod Res 46(7):1745–1767. https://doi.org/10.1080/0020754060097293

    Seamless and Secure VR: Adapting and Evaluating Established Authentication Systems for Virtual Reality

    Get PDF
    Virtual reality (VR) headsets are enabling a wide range of new opportunities for the user. For example, in the near future users may be able to visit virtual shopping malls and virtually join international conferences. These and many other scenarios pose new questions with regards to privacy and security, in particular authentication of users within the virtual environment. As a first step towards seamless VR authentication, this paper investigates the direct transfer of well-established concepts (PIN, Android unlock patterns) into VR. In a pilot study (N = 5) and a lab study (N = 25), we adapted existing mechanisms and evaluated their usability and security for VR. The results indicate that both PINs and patterns are well suited for authentication in VR. We found that the usability of both methods matched the performance known from the physical world. In addition, the private visual channel makes authentication harder to observe, indicating that authentication in VR using traditional concepts already achieves a good balance in the trade-off between usability and security. The paper contributes to a better understanding of authentication within VR environments, by providing the first investigation of established authentication methods within VR, and presents the base layer for the design of future authentication schemes, which are used in VR environments only

    Towards transparent telepresence

    Get PDF
    It is proposed that the concept of transparent telepresence can be closely approached through high fidelity technological mediation. It is argued that the matching of the system capabilities to those of the human user will yield a strong sense of immersion and presence at a remote site. Some applications of such a system are noted. The concept is explained and critical system elements are described together with an overview of some of the necessary system specifications

    An Introduction to 3D User Interface Design

    Get PDF
    3D user interface design is a critical component of any virtual environment (VE) application. In this paper, we present a broad overview of three-dimensional (3D) interaction and user interfaces. We discuss the effect of common VE hardware devices on user interaction, as well as interaction techniques for generic 3D tasks and the use of traditional two-dimensional interaction styles in 3D environments. We divide most user interaction tasks into three categories: navigation, selection/manipulation, and system control. Throughout the paper, our focus is on presenting not only the available techniques, but also practical guidelines for 3D interaction design and widely held myths. Finally, we briefly discuss two approaches to 3D interaction design, and some example applications with complex 3D interaction requirements. We also present an annotated online bibliography as a reference companion to this article

    Public HMDs: Modeling and Understanding User Behavior Around Public Head-Mounted Displays

    Get PDF
    Head-Mounted Displays (HMDs) are becoming ubiquitous; we are starting to see them deployed in public for different purposes. Museums, car companies and travel agencies use HMDs to promote their products. As a result, situations arise where users use them in public without experts supervision. This leads to challenges and opportunities, many of which are experienced in public display installations. For example, similar to public displays, public HMDs struggle to attract the passer-by's attention, but benefit from the honeypot effect that draws attention to them. Also passersby might be hesitant to wear a public HMD, due to the fear that its owner might not approve, or due to the perceived need for a prior permission. In this work, we discuss how public HMDs can benefit from research in public displays. In particular, based on the results of an in-the-wild deployment of a public HMD, we propose an adaptation of the audience funnel flow model of public display users to fit the context of public HMD usage. We discuss how public HMDs bring in challenges and opportunities, and create novel research directions that are relevant to both researchers in HMDs and researchers in public displays
    • 

    corecore