3,926 research outputs found

    Visual Perception for a Partner Robot Based on Computational Intelligent

    Get PDF
    We propose computational intelligence for partner robot perception in which the robot requires the capability of visual perception to interact with human beings. Basically, robots should conduct moving object extraction, clustering, and classification for visual perception used in interactions with human beings. We propose total human visual tracking by long-term memory, k-means, self-organizing map, and a fuzzy controller is used for movement output. Experimental results show that the partner robot can conduct the human visual tracking

    Evolutionary Robot Vision for People Tracking Based on Local Clustering

    Get PDF
    This paper discusses the role of evolutionary computation in visual perception for partner robots. The search of evolutionary computation has many analogies with human visual search. First of all, we discuss the analogies between the evolutionary search and human visual search. Next, we propose the concept of evolutionary robot vision, and a human tracking method based on the evolutionary robot vision. Finally, we show experimental results of the human tracking to discuss the effectiveness of our proposed method

    Human Detection and Gesture Recognition Based on Ambient Intelligence

    Get PDF

    Efficient Model Learning for Human-Robot Collaborative Tasks

    Get PDF
    We present a framework for learning human user models from joint-action demonstrations that enables the robot to compute a robust policy for a collaborative task with a human. The learning takes place completely automatically, without any human intervention. First, we describe the clustering of demonstrated action sequences into different human types using an unsupervised learning algorithm. These demonstrated sequences are also used by the robot to learn a reward function that is representative for each type, through the employment of an inverse reinforcement learning algorithm. The learned model is then used as part of a Mixed Observability Markov Decision Process formulation, wherein the human type is a partially observable variable. With this framework, we can infer, either offline or online, the human type of a new user that was not included in the training set, and can compute a policy for the robot that will be aligned to the preference of this new user and will be robust to deviations of the human actions from prior demonstrations. Finally we validate the approach using data collected in human subject experiments, and conduct proof-of-concept demonstrations in which a person performs a collaborative task with a small industrial robot
    • …
    corecore