7,957 research outputs found

    Unobtrusive and pervasive video-based eye-gaze tracking

    Get PDF
    Eye-gaze tracking has long been considered a desktop technology that finds its use inside the traditional office setting, where the operating conditions may be controlled. Nonetheless, recent advancements in mobile technology and a growing interest in capturing natural human behaviour have motivated an emerging interest in tracking eye movements within unconstrained real-life conditions, referred to as pervasive eye-gaze tracking. This critical review focuses on emerging passive and unobtrusive video-based eye-gaze tracking methods in recent literature, with the aim to identify different research avenues that are being followed in response to the challenges of pervasive eye-gaze tracking. Different eye-gaze tracking approaches are discussed in order to bring out their strengths and weaknesses, and to identify any limitations, within the context of pervasive eye-gaze tracking, that have yet to be considered by the computer vision community.peer-reviewe

    Generalized Rank Pooling for Activity Recognition

    Full text link
    Most popular deep models for action recognition split video sequences into short sub-sequences consisting of a few frames; frame-based features are then pooled for recognizing the activity. Usually, this pooling step discards the temporal order of the frames, which could otherwise be used for better recognition. Towards this end, we propose a novel pooling method, generalized rank pooling (GRP), that takes as input, features from the intermediate layers of a CNN that is trained on tiny sub-sequences, and produces as output the parameters of a subspace which (i) provides a low-rank approximation to the features and (ii) preserves their temporal order. We propose to use these parameters as a compact representation for the video sequence, which is then used in a classification setup. We formulate an objective for computing this subspace as a Riemannian optimization problem on the Grassmann manifold, and propose an efficient conjugate gradient scheme for solving it. Experiments on several activity recognition datasets show that our scheme leads to state-of-the-art performance.Comment: Accepted at IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 201

    Stratified decision forests for accurate anatomical landmark localization in cardiac images

    Get PDF
    Accurate localization of anatomical landmarks is an important step in medical imaging, as it provides useful prior information for subsequent image analysis and acquisition methods. It is particularly useful for initialization of automatic image analysis tools (e.g. segmentation and registration) and detection of scan planes for automated image acquisition. Landmark localization has been commonly performed using learning based approaches, such as classifier and/or regressor models. However, trained models may not generalize well in heterogeneous datasets when the images contain large differences due to size, pose and shape variations of organs. To learn more data-adaptive and patient specific models, we propose a novel stratification based training model, and demonstrate its use in a decision forest. The proposed approach does not require any additional training information compared to the standard model training procedure and can be easily integrated into any decision tree framework. The proposed method is evaluated on 1080 3D highresolution and 90 multi-stack 2D cardiac cine MR images. The experiments show that the proposed method achieves state-of-theart landmark localization accuracy and outperforms standard regression and classification based approaches. Additionally, the proposed method is used in a multi-atlas segmentation to create a fully automatic segmentation pipeline, and the results show that it achieves state-of-the-art segmentation accuracy

    Positive/Negative Emotion Detection from RGB-D upper Body Images

    Get PDF
    International audienceThe ability to identify users'mental states represents a valu-able asset for improving human-computer interaction. Considering that spontaneous emotions are conveyed mostly through facial expressions and the upper Body movements, we propose to use these modalities together for the purpose of negative/positive emotion classification. A method that allows the recognition of mental states from videos is pro-posed. Based on a dataset composed with RGB-D movies a set of indic-tors of positive and negative is extracted from 2D (RGB) information. In addition, a geometric framework to model the depth flows and capture human body dynamics from depth data is proposed. Due to temporal changes in pixel and depth intensity which characterize spontaneous emo-tions dataset, the depth features are used to define the relation between changes in upper body movements and the affect. We describe a space of depth and texture information to detect the mood of people using upper body postures and their evolution across time. The experimentation has been performed on Cam3D dataset and has showed promising results

    Advances in Monocular Exemplar-based Human Body Pose Analysis: Modeling, Detection and Tracking

    Get PDF
    Esta tesis contribuye en el análisis de la postura del cuerpo humano a partir de secuencias de imágenes adquiridas con una sola cámara. Esta temática presenta un amplio rango de potenciales aplicaciones en video-vigilancia, video-juegos o aplicaciones biomédicas. Las técnicas basadas en patrones han tenido éxito, sin embargo, su precisión depende de la similitud del punto de vista de la cámara y de las propiedades de la escena entre las imágenes de entrenamiento y las de prueba. Teniendo en cuenta un conjunto de datos de entrenamiento capturado mediante un número reducido de cámaras fijas, paralelas al suelo, se han identificado y analizado tres escenarios posibles con creciente nivel de dificultad: 1) una cámara estática paralela al suelo, 2) una cámara de vigilancia fija con un ángulo de visión considerablemente diferente, y 3) una secuencia de video capturada con una cámara en movimiento o simplemente una sola imagen estática
    corecore