31,339 research outputs found

    Deep HMResNet Model for Human Activity-Aware Robotic Systems

    Full text link
    Endowing the robotic systems with cognitive capabilities for recognizing daily activities of humans is an important challenge, which requires sophisticated and novel approaches. Most of the proposed approaches explore pattern recognition techniques which are generally based on hand-crafted features or learned features. In this paper, a novel Hierarchal Multichannel Deep Residual Network (HMResNet) model is proposed for robotic systems to recognize daily human activities in the ambient environments. The introduced model is comprised of multilevel fusion layers. The proposed Multichannel 1D Deep Residual Network model is, at the features level, combined with a Bottleneck MLP neural network to automatically extract robust features regardless of the hardware configuration and, at the decision level, is fully connected with an MLP neural network to recognize daily human activities. Empirical experiments on real-world datasets and an online demonstration are used for validating the proposed model. Results demonstrated that the proposed model outperforms the baseline models in daily human activity recognition.Comment: Presented at AI-HRI AAAI-FSS, 2018 (arXiv:1809.06606

    Anticipating Daily Intention using On-Wrist Motion Triggered Sensing

    Full text link
    Anticipating human intention by observing one's actions has many applications. For instance, picking up a cellphone, then a charger (actions) implies that one wants to charge the cellphone (intention). By anticipating the intention, an intelligent system can guide the user to the closest power outlet. We propose an on-wrist motion triggered sensing system for anticipating daily intentions, where the on-wrist sensors help us to persistently observe one's actions. The core of the system is a novel Recurrent Neural Network (RNN) and Policy Network (PN), where the RNN encodes visual and motion observation to anticipate intention, and the PN parsimoniously triggers the process of visual observation to reduce computation requirement. We jointly trained the whole network using policy gradient and cross-entropy loss. To evaluate, we collect the first daily "intention" dataset consisting of 2379 videos with 34 intentions and 164 unique action sequences. Our method achieves 92.68%, 90.85%, 97.56% accuracy on three users while processing only 29% of the visual observation on average

    Temporal Recurrent Networks for Online Action Detection

    Full text link
    Most work on temporal action detection is formulated as an offline problem, in which the start and end times of actions are determined after the entire video is fully observed. However, important real-time applications including surveillance and driver assistance systems require identifying actions as soon as each video frame arrives, based only on current and historical observations. In this paper, we propose a novel framework, Temporal Recurrent Network (TRN), to model greater temporal context of a video frame by simultaneously performing online action detection and anticipation of the immediate future. At each moment in time, our approach makes use of both accumulated historical evidence and predicted future information to better recognize the action that is currently occurring, and integrates both of these into a unified end-to-end architecture. We evaluate our approach on two popular online action detection datasets, HDD and TVSeries, as well as another widely used dataset, THUMOS'14. The results show that TRN significantly outperforms the state-of-the-art
    • …
    corecore