19,715 research outputs found

    Learning space-time structures for action recognition and localization

    Get PDF
    In this thesis the problem of automatic human action recognition and localization in videos is studied. In this problem, our goal is to recognize the category of the human action that is happening in the video, and also to localize the action in space and/or time. This problem is challenging due to the complexity of the human actions, the large intra-class variations and the distraction of backgrounds. Human actions are inherently structured patterns of body movements. However, past works are inadequate in learning the space-time structures in human actions and exploring them for better recognition and localization. In this thesis new methods are proposed that exploit such space-time structures for effective human action recognition and localization in videos, including sports videos, YouTube videos, TV programs and movies. A new local space-time video representation, the hierarchical Space-Time Segments, is first proposed. Using this new video representation, ensembles of hierarchical spatio-temporal trees, discovered directly from the training videos, are constructed to model the hierarchical, spatial and temporal structures of human actions. This proposed approach achieves promising performances in action recognition and localization on challenging benchmark datasets. Moreover, the discovered trees show good cross-dataset generalizability: trees learned on one dataset can be used to recognize and localize similar actions in another dataset. To handle large scale data, a deep model is explored that learns temporal progression of the actions using Long Short Term Memory (LSTM), which is a type of Recurrent Neural Network (RNN). Two novel ranking losses are proposed to train the model to better capture the temporal structures of actions for accurate action recognition and temporal localization. This model achieves state-of-art performance on a large scale video dataset. A deep model usually employs a Convolutional Neural Network (CNN) to learn visual features from video frames. The problem of utilizing web action images for training a Convolutional Neural Network (CNN) is also studied: training CNN typically requires a large number of training videos, but the findings of this study show that web action images can be utilized as additional training data to significantly reduce the burden of video training data collection

    Learning to track for spatio-temporal action localization

    Get PDF
    We propose an effective approach for spatio-temporal action localization in realistic videos. The approach first detects proposals at the frame-level and scores them with a combination of static and motion CNN features. It then tracks high-scoring proposals throughout the video using a tracking-by-detection approach. Our tracker relies simultaneously on instance-level and class-level detectors. The tracks are scored using a spatio-temporal motion histogram, a descriptor at the track level, in combination with the CNN features. Finally, we perform temporal localization of the action using a sliding-window approach at the track level. We present experimental results for spatio-temporal localization on the UCF-Sports, J-HMDB and UCF-101 action localization datasets, where our approach outperforms the state of the art with a margin of 15%, 7% and 12% respectively in mAP

    A robust and efficient video representation for action recognition

    Get PDF
    This paper introduces a state-of-the-art video representation and applies it to efficient action recognition and detection. We first propose to improve the popular dense trajectory features by explicit camera motion estimation. More specifically, we extract feature point matches between frames using SURF descriptors and dense optical flow. The matches are used to estimate a homography with RANSAC. To improve the robustness of homography estimation, a human detector is employed to remove outlier matches from the human body as human motion is not constrained by the camera. Trajectories consistent with the homography are considered as due to camera motion, and thus removed. We also use the homography to cancel out camera motion from the optical flow. This results in significant improvement on motion-based HOF and MBH descriptors. We further explore the recent Fisher vector as an alternative feature encoding approach to the standard bag-of-words histogram, and consider different ways to include spatial layout information in these encodings. We present a large and varied set of evaluations, considering (i) classification of short basic actions on six datasets, (ii) localization of such actions in feature-length movies, and (iii) large-scale recognition of complex events. We find that our improved trajectory features significantly outperform previous dense trajectories, and that Fisher vectors are superior to bag-of-words encodings for video recognition tasks. In all three tasks, we show substantial improvements over the state-of-the-art results

    Action Recognition by Hierarchical Mid-level Action Elements

    Full text link
    Realistic videos of human actions exhibit rich spatiotemporal structures at multiple levels of granularity: an action can always be decomposed into multiple finer-grained elements in both space and time. To capture this intuition, we propose to represent videos by a hierarchy of mid-level action elements (MAEs), where each MAE corresponds to an action-related spatiotemporal segment in the video. We introduce an unsupervised method to generate this representation from videos. Our method is capable of distinguishing action-related segments from background segments and representing actions at multiple spatiotemporal resolutions. Given a set of spatiotemporal segments generated from the training data, we introduce a discriminative clustering algorithm that automatically discovers MAEs at multiple levels of granularity. We develop structured models that capture a rich set of spatial, temporal and hierarchical relations among the segments, where the action label and multiple levels of MAE labels are jointly inferred. The proposed model achieves state-of-the-art performance in multiple action recognition benchmarks. Moreover, we demonstrate the effectiveness of our model in real-world applications such as action recognition in large-scale untrimmed videos and action parsing

    Weakly Supervised Action Localization by Sparse Temporal Pooling Network

    Full text link
    We propose a weakly supervised temporal action localization algorithm on untrimmed videos using convolutional neural networks. Our algorithm learns from video-level class labels and predicts temporal intervals of human actions with no requirement of temporal localization annotations. We design our network to identify a sparse subset of key segments associated with target actions in a video using an attention module and fuse the key segments through adaptive temporal pooling. Our loss function is comprised of two terms that minimize the video-level action classification error and enforce the sparsity of the segment selection. At inference time, we extract and score temporal proposals using temporal class activations and class-agnostic attentions to estimate the time intervals that correspond to target actions. The proposed algorithm attains state-of-the-art results on the THUMOS14 dataset and outstanding performance on ActivityNet1.3 even with its weak supervision.Comment: Accepted to CVPR 201

    Am I Done? Predicting Action Progress in Videos

    Get PDF
    In this paper we deal with the problem of predicting action progress in videos. We argue that this is an extremely important task since it can be valuable for a wide range of interaction applications. To this end we introduce a novel approach, named ProgressNet, capable of predicting when an action takes place in a video, where it is located within the frames, and how far it has progressed during its execution. To provide a general definition of action progress, we ground our work in the linguistics literature, borrowing terms and concepts to understand which actions can be the subject of progress estimation. As a result, we define a categorization of actions and their phases. Motivated by the recent success obtained from the interaction of Convolutional and Recurrent Neural Networks, our model is based on a combination of the Faster R-CNN framework, to make frame-wise predictions, and LSTM networks, to estimate action progress through time. After introducing two evaluation protocols for the task at hand, we demonstrate the capability of our model to effectively predict action progress on the UCF-101 and J-HMDB datasets

    ModDrop: adaptive multi-modal gesture recognition

    Full text link
    We present a method for gesture detection and localisation based on multi-scale and multi-modal deep learning. Each visual modality captures spatial information at a particular spatial scale (such as motion of the upper body or a hand), and the whole system operates at three temporal scales. Key to our technique is a training strategy which exploits: i) careful initialization of individual modalities; and ii) gradual fusion involving random dropping of separate channels (dubbed ModDrop) for learning cross-modality correlations while preserving uniqueness of each modality-specific representation. We present experiments on the ChaLearn 2014 Looking at People Challenge gesture recognition track, in which we placed first out of 17 teams. Fusing multiple modalities at several spatial and temporal scales leads to a significant increase in recognition rates, allowing the model to compensate for errors of the individual classifiers as well as noise in the separate channels. Futhermore, the proposed ModDrop training technique ensures robustness of the classifier to missing signals in one or several channels to produce meaningful predictions from any number of available modalities. In addition, we demonstrate the applicability of the proposed fusion scheme to modalities of arbitrary nature by experiments on the same dataset augmented with audio.Comment: 14 pages, 7 figure
    corecore