1,708 research outputs found

    Adaptive Methods for Color Vision Impaired Users

    Get PDF
    Color plays a key role in the understanding of the information in computer environments. It happens that about 5% of the world population is affected by color vision deficiency (CVD), also called color blindness. This visual impairment hampers the color perception, ending up by limiting the overall perception that CVD people have about the surrounding environment, no matter it is real or virtual. In fact, a CVD individual may not distinguish between two different colors, what often originates confusion or a biased understanding of the reality, including web environments, whose web pages are plenty of media elements like text, still images, video, sprites, and so on. Aware of the difficulties that color-blind people may face in interpreting colored contents, a significant number of recoloring algorithms have been proposed in the literature with the purpose of improving the visual perception of those people somehow. However, most of those algorithms lack a systematic study of subjective assessment, what undermines their validity, not to say usefulness. Thus, in the sequel of the research work behind this Ph.D. thesis, the central question that needs to be answered is whether recoloring algorithms are of any usefulness and help for colorblind people or not. With this in mind, we conceived a few preliminary recoloring algorithms that were published in conference proceedings elsewhere. Except the algorithm detailed in Chapter 3, these conference algorithms are not described in this thesis, though they have been important to engender those presented here. The first algorithm (Chapter 3) was designed and implemented for people with dichromacy to improve their color perception. The idea is to project the reddish hues onto other hues that are perceived more regularly by dichromat people. The second algorithm (Chapter 4) is also intended for people with dichromacy to improve their perception of color, but its applicability covers the adaptation of text and image, in HTML5- compliant web environments. This enhancement of color contrast of text and imaging in web pages is done while keeping the naturalness of color as much as possible. Also, to the best of our knowledge, this is the first web recoloring approach targeted to dichromat people that takes into consideration both text and image recoloring in an integrated manner. The third algorithm (Chapter 5) primarily focuses on the enhancement of some of the object contours in still images, instead of recoloring the pixels of the regions bounded by such contours. Enhancing contours is particularly suited to increase contrast in images, where we find adjacent regions that are color indistinguishable from dichromat’s point of view. To our best knowledge, this is one of the first algorithms that take advantage of image analysis and processing techniques for region contours. After accurate subjective assessment studies for color-blind people, we concluded that the CVD adaptation methods are useful in general. Nevertheless, each method is not efficient enough to adapt all sorts of images, that is, the adequacy of each method depends on the type of image (photo-images, graphical representations, etc.). Furthermore, we noted that the experience-based perceptual learning of colorblind people throughout their lives determines their visual perception. That is, color adaptation algorithms must satisfy requirements such as color naturalness and consistency, to ensure that dichromat people improve their visual perception without artifacts. On the other hand, CVD adaptation algorithms should be object-oriented, instead of pixel-oriented (as typically done), to select judiciously pixels that should be adapted. This perspective opens an opportunity window for future research in color accessibility in the field of in human-computer interaction (HCI).A cor desempenha um papel fundamental na compreensão da informação em ambientes computacionais. Porém, cerca de 5% da população mundial é afetada pela deficiência de visão de cor (ou Color Vision Deficiency (CVD), do Inglês), correntemente designada por daltonismo. Esta insuficiência visual dificulta a perceção das cores, o que limita a perceção geral que os indivíduos têm sobre o meio, seja real ou virtual. Efetivamente, um indivíduo com CVD vê como iguais cores que são diferentes, o que origina confusão ou uma compreensão distorcida da realidade, assim como dos ambientes web, onde existe uma abundância de conteúdos média coloridos, como texto, imagens fixas e vídeo, entre outros. Com o intuito de mitigar as dificuldades que as pessoas com CVD enfrentam na interpretação de conteúdos coloridos, tem sido proposto na literatura um número significativo de algoritmos de recoloração, que têm como o objetivo melhorar, de alguma forma, a perceção visual de pessoas com CVD. Porém, a maioria desses trabalhos carece de um estudo sistemático de avaliação subjetiva, o que põe em causa a sua validação, se não mesmo a sua utilidade. Assim, a principal questão à qual se pretende responder, como resultado do trabalho de investigação subjacente a esta tese de doutoramento, é se os algoritmos de recoloração têm ou não uma real utilidade, constituindo assim uma ajuda efetiva às pessoas com daltonismo. Tendo em mente esta questão, concebemos alguns algoritmos de recoloração preliminares que foram publicados em atas de conferências. Com exceção do algoritmo descrito no Capítulo 3, esses algoritmos não são descritos nesta tese, não obstante a sua importância na conceção daqueles descritos nesta dissertação. O primeiro algoritmo (Capítulo 3) foi projetado e implementado para pessoas com dicromacia, a fim de melhorar a sua perceção da cor. A ideia consiste em projetar as cores de matiz avermelhada em matizes que são melhor percebidos pelas pessoas com os tipos de daltonismo em causa. O segundo algoritmo (Capítulo 4) também se destina a melhorar a perceção da cor por parte de pessoas com dicromacia, porém a sua aplicabilidade abrange a adaptação de texto e imagem, em ambientes web compatíveis com HTML5. Isto é conseguido através do realce do contraste de cores em blocos de texto e em imagens, em páginas da web, mantendo a naturalidade da cor tanto quanto possível. Além disso, tanto quanto sabemos, esta é a primeira abordagem de recoloração em ambiente web para pessoas com dicromacia, que trata o texto e a imagem de forma integrada. O terceiro algoritmo (Capítulo 5) centra-se principalmente na melhoria de alguns dos contornos de objetos em imagens, em vez de aplicar a recoloração aos pixels das regiões delimitadas por esses contornos. Esta abordagem é particularmente adequada para aumentar o contraste em imagens, quando existem regiões adjacentes que são de cor indistinguível sob a perspetiva dos observadores com dicromacia. Também neste caso, e tanto quanto é do nosso conhecimento, este é um dos primeiros algoritmos em que se recorre a técnicas de análise e processamento de contornos de regiões. Após rigorosos estudos de avaliação subjetiva com pessoas com daltonismo, concluiu-se que os métodos de adaptação CVD são úteis em geral. No entanto, cada método não é suficientemente eficiente para todos os tipo de imagens, isto é, o desempenho de cada método depende do tipo de imagem (fotografias, representações gráficas, etc.). Além disso, notámos que a aprendizagem perceptual baseada na experiência das pessoas daltónicas ao longo de suas vidas é determinante para perceber aquilo que vêem. Isto significa que os algoritmos de adaptação de cor devem satisfazer requisitos tais como a naturalidade e a consistência da cor, de modo a não pôr em causa aquilo que os destinatários consideram razoável ver no mundo real. Por outro lado, a abordagem seguida na adaptação CVD deve ser orientada aos objetos, em vez de ser orientada aos pixéis (como tem sido feito até ao momento), de forma a possibilitar uma seleção mais criteriosa dos pixéis que deverão ser sujeitos ao processo de adaptação. Esta perspectiva abre uma janela de oportunidade para futura investigação em acessibilidade da cor no domínio da interacção humano-computador (HCI)

    Evaluation of the color image and video processing chain and visual quality management for consumer systems

    Get PDF
    With the advent of novel digital display technologies, color processing is increasingly becoming a key aspect in consumer video applications. Today’s state-of-the-art displays require sophisticated color and image reproduction techniques in order to achieve larger screen size, higher luminance and higher resolution than ever before. However, from color science perspective, there are clearly opportunities for improvement in the color reproduction capabilities of various emerging and conventional display technologies. This research seeks to identify potential areas for improvement in color processing in a video processing chain. As part of this research, various processes involved in a typical video processing chain in consumer video applications were reviewed. Several published color and contrast enhancement algorithms were evaluated, and a novel algorithm was developed to enhance color and contrast in images and videos in an effective and coordinated manner. Further, a psychophysical technique was developed and implemented for performing visual evaluation of color image and consumer video quality. Based on the performance analysis and visual experiments involving various algorithms, guidelines were proposed for the development of an effective color and contrast enhancement method for images and video applications. It is hoped that the knowledge gained from this research will help build a better understanding of color processing and color quality management methods in consumer video

    Variational models for color image correction inspired by visual perception and neuroscience

    Get PDF
    Reproducing the perception of a real-world scene on a display device is a very challenging task which requires the understanding of the camera processing pipeline, the display process, and the way the human visual system processes the light it captures. Mathematical models based on psychophysical and physiological laws on color vision, named Retinex, provide efficient tools to handle degradations produced during the camera processing pipeline like the reduction of the contrast. In particular, Batard and Bertalmío [J Math. Imag. Vis. 60(6), 849-881 (2018)] described some psy-chophysical laws on brightness perception as covariant derivatives, included them into a variational model, and observed that the quality of the color image correction is correlated with the accuracy of the vision model it includes. Based on this observation, we postulate that this model can be improved by including more accurate data on vision with a special attention on visual neuro-science here. Then, inspired by the presence of neurons responding to different visual attributes in the area V1 of the visual cortex as orientation, color or movement, to name a few, and horizontal connections modeling the interactions between those neurons, we construct two variational models to process both local (edges, textures) and global (contrast) features. This is an improvement with respect to the model of Batard and Bertalmío as the latter can not process local and global features independently and simultaneously. Finally, we conduct experiments on color images which corroborate the improvement provided by the new models

    Review on Efficient Contrast Enhancement Technique for Low Illumination Color Images

    Get PDF
    A digital color image, as its fundamental purpose requires, is to provide a perception of the scene to a human viewer or a computer for carrying out automation tasks such as object recognition. An image of high quality that could truly represent the captured object and the scene is hence in great demand.Contrast is an important factor in any subjective evaluation of image quality. It is the difference in visual properties that makes an object distinguishable from other object and background. On the contrary, the human visual perception is interested in hue (H), saturation (S) and intensity (I) attributes that are carried by the color image. Therefore, when the image has to be processed, most approaches convert the RGB space into some convenient working signal spaces that are close to human perceptions

    Human-centered display design : balancing technology & perception

    Get PDF

    Brilliance, contrast, colorfulness, and the perceived volume of device color gamut

    Get PDF
    With the advent of digital video and cinema media technologies, much more is possible in achieving brighter and more vibrant colors, colors that transcend our experience. The challenge is in the realization of these possibilities in an industry rooted in 1950s technology where color gamut is represented with little or no insight into the way an observer perceives color as a complex mixture of the observer’s intentions, desires, and interests. By today’s standards, five perceptual attributes – brightness, lightness, colorfulness, chroma, and hue - are believed to be required for a complete specification. As a compelling case for such a representation, a display system is demonstrated that is capable of displaying color beyond the realm of object color, perceptually even beyond the spectrum locus of pure color. All this begs the question: Just what is meant by perceptual gamut? To this end, the attributes of perceptual gamut are identified through psychometric testing and the color appearance models CIELAB and CIECAM02. Then, by way of demonstration, these attributes were manipulated to test their application in wide gamut displays. In concert with these perceptual attributes and their manipulation, Ralph M. Evans’ concept of brilliance as an attribute of perception that extends beyond the realm of everyday experience, and the theoretical studies of brilliance by Y. Nayatani, a method was developed for producing brighter, more colorful colors and deeper, darker colors with the aim of preserving object color perception – flesh tones in particular. The method was successfully demonstrated and tested in real images using psychophysical methods in the very real, practical application of expanding the gamut of sRGB into an emulation of the wide gamut, xvYCC encoding
    corecore