4,580 research outputs found

    Fast-SSC-Flip Decoding of Polar Codes

    Full text link
    Polar codes are widely considered as one of the most exciting recent discoveries in channel coding. For short to moderate block lengths, their error-correction performance under list decoding can outperform that of other modern error-correcting codes. However, high-speed list-based decoders with moderate complexity are challenging to implement. Successive-cancellation (SC)-flip decoding was shown to be capable of a competitive error-correction performance compared to that of list decoding with a small list size, at a fraction of the complexity, but suffers from a variable execution time and a higher worst-case latency. In this work, we show how to modify the state-of-the-art high-speed SC decoding algorithm to incorporate the SC-flip ideas. The algorithmic improvements are presented as well as average execution-time results tailored to a hardware implementation. The results show that the proposed fast-SSC-flip algorithm has a decoding speed close to an order of magnitude better than the previous works while retaining a comparable error-correction performance.Comment: 5 pages, 3 figures, appeared at IEEE Wireless Commun. and Netw. Conf. (WCNC) 201

    On the Construction and Decoding of Concatenated Polar Codes

    Full text link
    A scheme for concatenating the recently invented polar codes with interleaved block codes is considered. By concatenating binary polar codes with interleaved Reed-Solomon codes, we prove that the proposed concatenation scheme captures the capacity-achieving property of polar codes, while having a significantly better error-decay rate. We show that for any ϵ>0\epsilon > 0, and total frame length NN, the parameters of the scheme can be set such that the frame error probability is less than 2N1ϵ2^{-N^{1-\epsilon}}, while the scheme is still capacity achieving. This improves upon 2^{-N^{0.5-\eps}}, the frame error probability of Arikan's polar codes. We also propose decoding algorithms for concatenated polar codes, which significantly improve the error-rate performance at finite block lengths while preserving the low decoding complexity

    From Polar to Reed-Muller Codes: a Technique to Improve the Finite-Length Performance

    Full text link
    We explore the relationship between polar and RM codes and we describe a coding scheme which improves upon the performance of the standard polar code at practical block lengths. Our starting point is the experimental observation that RM codes have a smaller error probability than polar codes under MAP decoding. This motivates us to introduce a family of codes that "interpolates" between RM and polar codes, call this family Cinter={Cα:α[0,1]}{\mathcal C}_{\rm inter} = \{C_{\alpha} : \alpha \in [0, 1]\}, where Cαα=1C_{\alpha} \big |_{\alpha = 1} is the original polar code, and Cαα=0C_{\alpha} \big |_{\alpha = 0} is an RM code. Based on numerical observations, we remark that the error probability under MAP decoding is an increasing function of α\alpha. MAP decoding has in general exponential complexity, but empirically the performance of polar codes at finite block lengths is boosted by moving along the family Cinter{\mathcal C}_{\rm inter} even under low-complexity decoding schemes such as, for instance, belief propagation or successive cancellation list decoder. We demonstrate the performance gain via numerical simulations for transmission over the erasure channel as well as the Gaussian channel.Comment: 8 pages, 7 figures, in IEEE Transactions on Communications, 2014 and in ISIT'1

    Magic state distillation with punctured polar codes

    Get PDF
    We present a scheme for magic state distillation using punctured polar codes. Our results build on some recent work by Bardet et al. (ISIT, 2016) who discovered that polar codes can be described algebraically as decreasing monomial codes. Using this powerful framework, we construct tri-orthogonal quantum codes (Bravyi et al., PRA, 2012) that can be used to distill magic states for the TT gate. An advantage of these codes is that they permit the use of the successive cancellation decoder whose time complexity scales as O(Nlog(N))O(N\log(N)). We supplement this with numerical simulations for the erasure channel and dephasing channel. We obtain estimates for the dimensions and error rates for the resulting codes for block sizes up to 2202^{20} for the erasure channel and 2162^{16} for the dephasing channel. The dimension of the triply-even codes we obtain is shown to scale like O(N0.8)O(N^{0.8}) for the binary erasure channel at noise rate 0.010.01 and O(N0.84)O(N^{0.84}) for the dephasing channel at noise rate 0.0010.001. The corresponding bit error rates drop to roughly 8×10288\times10^{-28} for the erasure channel and 7×10157 \times 10^{-15} for the dephasing channel respectively.Comment: 18 pages, 4 figure

    Construction of Capacity-Achieving Lattice Codes: Polar Lattices

    Full text link
    In this paper, we propose a new class of lattices constructed from polar codes, namely polar lattices, to achieve the capacity \frac{1}{2}\log(1+\SNR) of the additive white Gaussian-noise (AWGN) channel. Our construction follows the multilevel approach of Forney \textit{et al.}, where we construct a capacity-achieving polar code on each level. The component polar codes are shown to be naturally nested, thereby fulfilling the requirement of the multilevel lattice construction. We prove that polar lattices are \emph{AWGN-good}. Furthermore, using the technique of source polarization, we propose discrete Gaussian shaping over the polar lattice to satisfy the power constraint. Both the construction and shaping are explicit, and the overall complexity of encoding and decoding is O(NlogN)O(N\log N) for any fixed target error probability.Comment: full version of the paper to appear in IEEE Trans. Communication
    corecore