research

On the Construction and Decoding of Concatenated Polar Codes

Abstract

A scheme for concatenating the recently invented polar codes with interleaved block codes is considered. By concatenating binary polar codes with interleaved Reed-Solomon codes, we prove that the proposed concatenation scheme captures the capacity-achieving property of polar codes, while having a significantly better error-decay rate. We show that for any ϵ>0\epsilon > 0, and total frame length NN, the parameters of the scheme can be set such that the frame error probability is less than 2−N1−ϵ2^{-N^{1-\epsilon}}, while the scheme is still capacity achieving. This improves upon 2^{-N^{0.5-\eps}}, the frame error probability of Arikan's polar codes. We also propose decoding algorithms for concatenated polar codes, which significantly improve the error-rate performance at finite block lengths while preserving the low decoding complexity

    Similar works

    Full text

    thumbnail-image

    Available Versions