79,872 research outputs found

    Entanglement cost and quantum channel simulation

    Get PDF
    This paper proposes a revised definition for the entanglement cost of a quantum channel N\mathcal{N}. In particular, it is defined here to be the smallest rate at which entanglement is required, in addition to free classical communication, in order to simulate nn calls to N\mathcal{N}, such that the most general discriminator cannot distinguish the nn calls to N\mathcal{N} from the simulation. The most general discriminator is one who tests the channels in a sequential manner, one after the other, and this discriminator is known as a quantum tester [Chiribella et al., Phys. Rev. Lett., 101, 060401 (2008)] or one who is implementing a quantum co-strategy [Gutoski et al., Symp. Th. Comp., 565 (2007)]. As such, the proposed revised definition of entanglement cost of a quantum channel leads to a rate that cannot be smaller than the previous notion of a channel's entanglement cost [Berta et al., IEEE Trans. Inf. Theory, 59, 6779 (2013)], in which the discriminator is limited to distinguishing parallel uses of the channel from the simulation. Under this revised notion, I prove that the entanglement cost of certain teleportation-simulable channels is equal to the entanglement cost of their underlying resource states. Then I find single-letter formulas for the entanglement cost of some fundamental channel models, including dephasing, erasure, three-dimensional Werner--Holevo channels, epolarizing channels (complements of depolarizing channels), as well as single-mode pure-loss and pure-amplifier bosonic Gaussian channels. These examples demonstrate that the resource theory of entanglement for quantum channels is not reversible. Finally, I discuss how to generalize the basic notions to arbitrary resource theories.Comment: 28 pages, 7 figure

    The dilogarithmic central extension of the Ptolemy-Thompson group via the Kashaev quantization

    Full text link
    Quantization of universal Teichm\"uller space provides projective representations of the Ptolemy-Thompson group, which is isomorphic to the Thompson group TT. This yields certain central extensions of TT by Z\mathbb{Z}, called dilogarithmic central extensions. We compute a presentation of the dilogarithmic central extension T^Kash\hat{T}^{Kash} of TT resulting from the Kashaev quantization, and show that it corresponds to 66 times the Euler class in H2(T;Z)H^2(T;\mathbb{Z}). Meanwhile, the braided Ptolemy-Thompson groups Tβˆ—T^*, Tβ™―T^\sharp of Funar-Kapoudjian are extensions of TT by the infinite braid group B∞B_\infty, and by abelianizing the kernel B∞B_\infty one constructs central extensions Tabβˆ—T^*_{ab}, Tabβ™―T^\sharp_{ab} of TT by Z\mathbb{Z}, which are of topological nature. We show T^Kashβ‰…Tabβ™―\hat{T}^{Kash}\cong T^\sharp_{ab}. Our result is analogous to that of Funar and Sergiescu, who computed a presentation of another dilogarithmic central extension T^CF\hat{T}^{CF} of TT resulting from the Chekhov-Fock(-Goncharov) quantization and thus showed that it corresponds to 1212 times the Euler class and that T^CFβ‰…Tabβˆ—\hat{T}^{CF} \cong T^*_{ab}. In addition, we suggest a natural relationship between the two quantizations in the level of projective representations.Comment: 43 pages, 15 figures. v2: substantially revised from the first version, and the author affiliation changed. // v3: Groups M and T are shown to be anti-isomorphic (new Prop.2.32), which makes the whole construction more natural. And some minor changes // v4: reflects all changes made for journal publication (to appear in Adv. Math.
    • …
    corecore