120,828 research outputs found

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Data mining and fusion

    No full text

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    Task Decomposition and Synchronization for Semantic Biomedical Image Segmentation

    Full text link
    Semantic segmentation is essentially important to biomedical image analysis. Many recent works mainly focus on integrating the Fully Convolutional Network (FCN) architecture with sophisticated convolution implementation and deep supervision. In this paper, we propose to decompose the single segmentation task into three subsequent sub-tasks, including (1) pixel-wise image segmentation, (2) prediction of the class labels of the objects within the image, and (3) classification of the scene the image belonging to. While these three sub-tasks are trained to optimize their individual loss functions of different perceptual levels, we propose to let them interact by the task-task context ensemble. Moreover, we propose a novel sync-regularization to penalize the deviation between the outputs of the pixel-wise segmentation and the class prediction tasks. These effective regularizations help FCN utilize context information comprehensively and attain accurate semantic segmentation, even though the number of the images for training may be limited in many biomedical applications. We have successfully applied our framework to three diverse 2D/3D medical image datasets, including Robotic Scene Segmentation Challenge 18 (ROBOT18), Brain Tumor Segmentation Challenge 18 (BRATS18), and Retinal Fundus Glaucoma Challenge (REFUGE18). We have achieved top-tier performance in all three challenges.Comment: IEEE Transactions on Medical Imagin

    A Review on the Applications of Crowdsourcing in Human Pathology

    Full text link
    The advent of the digital pathology has introduced new avenues of diagnostic medicine. Among them, crowdsourcing has attracted researchers' attention in the recent years, allowing them to engage thousands of untrained individuals in research and diagnosis. While there exist several articles in this regard, prior works have not collectively documented them. We, therefore, aim to review the applications of crowdsourcing in human pathology in a semi-systematic manner. We firstly, introduce a novel method to do a systematic search of the literature. Utilizing this method, we, then, collect hundreds of articles and screen them against a pre-defined set of criteria. Furthermore, we crowdsource part of the screening process, to examine another potential application of crowdsourcing. Finally, we review the selected articles and characterize the prior uses of crowdsourcing in pathology

    A review of research into the development of radiologic expertise: Implications for computer-based training

    Get PDF
    Rationale and Objectives. Studies of radiologic error reveal high levels of variation between radiologists. Although it is known that experts outperform novices, we have only limited knowledge about radiologic expertise and how it is acquired.Materials and Methods. This review identifies three areas of research: studies of the impact of experience and related factors on the accuracy of decision-making; studies of the organization of expert knowledge; and studies of radiologists' perceptual processes.Results and Conclusion. Interpreting evidence from these three paradigms in the light of recent research into perceptual learning and studies of the visual pathway has a number of conclusions for the training of radiologists, particularly for the design of computer-based learning programs that are able to illustrate the similarities and differences between diagnoses, to give access to large numbers of cases and to help identify weaknesses in the way trainees build up a global representation from fixated regions
    • …
    corecore