8 research outputs found

    On protection in federated social computing systems

    Full text link
    Nowadays, a user may belong to multiple social computing systems (SCSs) in order to benefit from a variety of services that each SCS may provide. To facilitate the sharing of contents across the system boundary, some SCSs provide a mechanism by which a user may “connect ” his accounts on two SCSs. The effect is that contents from one SCS can now be shared to another SCS. Although such a connection feature delivers clear usability advantages for users, it also generates a host of privacy challenges. A notable challenge is that the access control policy of the SCS from which the content originates may not be honoured by the SCS to which the content migrates, because the latter fails to faithfully replicate the protection model of the former. In this paper we formulate a protection model for a fed-eration of SCSs that support content sharing via account connection. A core feature of the model is that sharable con-tents are protected by access control policies that transcend system boundary — they are enforced even after contents are migrated from one SCS to another. To ensure faith-ful interpretation of access control policies, their evaluation involves querying the protection states of various SCSs, us-ing Secure Multiparty Computation (SMC). An important contribution of this work is that we carefully formulate the conditions under which policy evaluation using SMC does not lead to the leakage of information about the protection states of the SCSs. We also study the computational prob-lem of statically checking if an access control policy can be evaluated without information leakage. Lastly, we identify useful policy idioms

    Private Function Evaluation with Cards

    Get PDF
    Card-based protocols allow to evaluate an arbitrary fixed Boolean function on a hidden input to obtain a hidden output, without the executer learning anything about either of the two (e.g., [12]). We explore the case where implements a universal function, i.e., is given the encoding ⟚⟩ of a program and an input and computes (⟚⟩,)=(). More concretely, we consider universal circuits, Turing machines, RAM machines, and branching programs, giving secure and conceptually simple card-based protocols in each case. We argue that card-based cryptography can be performed in a setting that is only very weakly interactive, which we call the “surveillance” model. Here, when Alice executes a protocol on the cards, the only task of Bob is to watch that Alice does not illegitimately turn over cards and that she shuffles in a way that nobody knows anything about the total permutation applied to the cards. We believe that because of this very limited interaction, our results can be called program obfuscation. As a tool, we develop a useful sub-protocol II_{II}↑ that couples the two equal-length sequences , and jointly and obliviously permutes them with the permutation ∈ that lexicographically minimizes (). We argue that this generalizes ideas present in many existing card-based protocols. In fact, AND, XOR, bit copy [37], coupled rotation shuffles [30] and the “permutation division” protocol of [22] can all be expressed as “coupled sort protocols”

    How to Hide Circuits in MPC An Efficient Framework for Private Function Evaluation

    Get PDF
    We revisit the problem of general-purpose private function evaluation (PFE) wherein a single party P1 holds a circuit C, while each Pi for 1 ≀ i ≀ n holds a private input xi, and the goal is for a subset (or all) of the parties to learn C(x1,..., xn) but nothing else. We put forth a general framework for designing PFE where the task of hiding the circuit and securely evaluating its gates are addressed independently: First, we reduce the task of hiding the circuit topology to oblivious evaluation of a mapping that encodes the topology of the circuit, which we refer to as oblivious extended permutation (OEP) since the mapping is a generalization of the permutation mapping. Second, we design a subprotocol for private evaluation of a single gate (PFE for one gate), which we refer to as private gate evaluation (PGE). Finally, we show how to naturally combine the two components to obtain efficient and secure PFE. We apply our framework to several well-known general-purpose MPC constructions, in each case, obtaining the most efficient PFE construction to date, for the considered setting. Similar to the previous work we only consider semi-honest adversaries in this paper. ‱ In the multiparty case with dishonest majority, we apply our techniques to the seminal GMW protocol [GMW87] and obtain the first general-purpose PFE with linear complexity in the circui

    OPFE: Outsourcing Computation for Private Function Evaluation

    Get PDF
    Outsourcing secure multiparty computation(SMC) protocols has allowed resource-constrained devices to take advantage of these developing cryptographic primitives with great efficiency. While the existing constructions for outsourced SMC guarantee input and output privacy, they require that all parties know the function being evaluated. Thus, stronger security guarantees are necessary in applications where the function itself needs to be kept private. We develop the first linear-complexity protocols for outsourcing private function evaluation (PFE), a subset of SMC protocols that provide both input and function privacy. Assuming a semi-honest function holder, we build on the most efficient two-party PFE constructions to develop outsourced protocols that are secure against a semi-honest, covert, or malicious Cloud server and malicious mobile devices providing input to the function. Our protocols require minimal symmetric key operations and only two rounds of communication from the mobile participants. As a secondary contribution, we develop a technique for combining public and private sub-circuits in a single computation called partially-circuit private (PCP) garbling. This novel garbling technique allows us to apply auxiliary circuits to check for malicious behavior using only free-XOR overhead gates rather than the significantly more costly PFE gate construction. These protocols demonstrate the feasibility of outsourced PFE and provide a first step towards developing privacy-preserving applications for use in Cloud computing

    Privacy-Preserving Epidemiological Modeling on Mobile Graphs

    Get PDF
    Since 2020, governments all over the world have used a variety of containment measures to control the spread of COVID-19, such as contact tracing, social distance regulations, and curfews. Epidemiological simulations are commonly used to assess the impact of those policies before they are implemented. Unfortunately, their predictive accuracy is hampered by the scarcity of relevant empirical data, specifically detailed social contact graphs. As this data is inherently privacy-critical, there is an urgent need for a method to perform powerful epidemiological simulations on real-world contact graphs without disclosing sensitive~information. In this work, we present RIPPLE, a privacy-preserving epidemiological modeling framework that enables the execution of standard epidemiological models for infectious disease on a population\u27s most recent real contact graph while keeping all contact information privately and locally on the participants\u27 devices. As underlying building block, we present PIR-SUM, a novel extension to private information retrieval that allows users to securely download the sum of a set of elements from a database rather than individual elements. We provide a proof-of-concept implementation of our protocols demonstrating that a 2-week simulation over a population of half a million can be finished in 7 minutes, with each participant communicating less than 50 KB of data

    Cryptographic Protocols from Physical Assumptions

    Get PDF
    Moderne Kryptographie erlaubt nicht nur, personenbezogene Daten im Internet zu schĂŒtzen oder sich fĂŒr bestimmte Dienste zu authentifizieren, sondern ermöglicht auch das Auswerten einer Funktion auf geheimen Eingaben mehrerer Parteien, ohne dass dabei etwas ĂŒber diese Eingaben gelernt werden kann (mit der Ausnahme von Informationen, die aus der Ausgabe und eigenen Eingaben effizient abgeleitet werden können). Kryptographische Protokolle dieser Art werden sichere Mehrparteienberechnung genannt und eignen sich fĂŒr ein breites Anwendungsspektrum, wie z.B. geheime Abstimmungen und Auktionen. Um die Sicherheit solcher Protokolle zu beweisen, werden Annahmen benötigt, die oft komplexitĂ€tstheoretischer Natur sind, beispielsweise, dass es schwierig ist, hinreichend große Zahlen zu faktorisieren. Sicherheitsannahmen, die auf physikalischen Prinzipien basieren, bieten im Gegensatz zu komplexitĂ€tstheoretischen Annahmen jedoch einige Vorteile: die Protokolle sind meist konzeptionell einfacher, die Sicherheit ist unabhĂ€ngig von den BerechnungskapazitĂ€ten des Angreifers, und die Funktionsweise und Sicherheit ist oft fĂŒr den Menschen leichter nachvollziehbar. (Zum Beispiel forderte das Bundesverfassungsgericht: „Beim Einsatz elektronischer WahlgerĂ€te mĂŒssen die wesentlichen Schritte der Wahlhandlung und der Ergebnisermittlung vom BĂŒrger zuverlĂ€ssig und ohne besondere Sachkenntnis ĂŒberprĂŒft werden können.“ (BVerfG, Urteil des Zweiten Senats vom 03. MĂ€rz 2009)). Beispiele fĂŒr solche Annahmen sind physikalisch getrennte oder unkorrumpierbare Hardware-Komponenten (vgl. Broadnax et al., 2018), Write-Only-GerĂ€te fĂŒr Logging, oder frei zu rubbelnde Felder, wie man sie von PIN-Briefen kennt. Auch die aus der Quantentheorie folgende Nicht-Duplizierbarkeit von QuantenzustĂ€nden ist eine physikalische Sicherheitsannahme, die z.B. verwendet wird, um nicht-klonbares „Quantengeld“ zu realisieren. In der vorliegenden Dissertation geht es neben Protokollen, die die Sicherheit und Isolation bestimmter einfacher Hardware-Komponenten als Vertrauensanker verwenden, im Besonderen um kryptographischen Protokolle fĂŒr die sichere Mehrparteienberechnung, die mit Hilfe physikalischer Spielkarten durchgefĂŒhrt werden. Die Sicherheitsannahme besteht darin, dass die Karten ununterscheidbare RĂŒckseiten haben und, dass bestimmte Mischoperationen sicher durchgefĂŒhrt werden können. Eine Anwendung dieser Protokolle liegt also in der Veranschaulichung von Kryptographie und in der Ermöglichung sicherer Mehrparteienberechnungen, die gĂ€nzlich ohne Computer ausgefĂŒhrt werden können. Ein Ziel in diesem Bereich der Kryptographie ist es, Protokolle anzugeben, die möglichst wenige Karten benötigen – und sie als optimal in diesem Sinne zu beweisen. AbhĂ€ngig von Anforderungen an das Laufzeitverhalten (endliche vs. lediglich im Erwartungswert endliche Laufzeit) und an die PraktikabilitĂ€t der eingesetzten Mischoperationen, ergeben sich unterschiedliche untere Schranken fĂŒr die mindestens benötigte Kartenanzahl. Im Rahmen der Arbeit wird fĂŒr jede Kombination dieser Anforderungen ein UND-Protokoll – ein logisches UND zweier in Karten codierter Bits; dieses ist zusammen mit der Negation und dem Kopieren von Bits hinreichend fĂŒr die Realisierung allgemeiner Schaltkreise – konstruiert oder in der Literatur identifiziert, das mit der minimalen Anzahl an Karten auskommt, und dies auch als Karten-minimal bewiesen. Insgesamt ist UND mit vier (fĂŒr erwartet endliche Laufzeit (Koch, Walzer und HĂ€rtel, 2015; Koch, 2018)), fĂŒnf (fĂŒr praktikable Mischoperationen oder endliche Laufzeit (Koch, Walzer und HĂ€rtel, 2015; Koch, 2018)) oder sechs Karten (fĂŒr endliche Laufzeit und gleichzeitig praktikable Mischoperationen (Kastner et al., 2017)) möglich und optimal. FĂŒr die notwendigen Struktureinsichten wurden so-genannte „Zustandsdiagramme“ mit zugehörigen KalkĂŒlregeln entwickelt, die eine graphenbasierte Darstellung aller möglichen ProtokolldurchlĂ€ufe darstellen und an denen Korrektheit und Sicherheit der Protokolle direkt ablesbar sind (Koch, Walzer und HĂ€rtel, 2015; Kastner et al., 2017). Dieser KalkĂŒl hat seitdem eine breite Verwendung in der bereichsrelevanten Literatur gefunden. (Beweise fĂŒr untere Schranken bzgl. der Kartenanzahl werden durch den KalkĂŒl zu Beweisen, die zeigen, dass bestimmte ProtokollzustĂ€nde in einer bestimmten kombinatorischen Graphenstruktur nicht erreichbar sind.) Mit Hilfe des KalkĂŒls wurden Begriffe der Spielkartenkryptographie als C-Programm formalisiert und (unter bestimmten EinschrĂ€nkungen) mit einem „Software Bounded Model Checking“-Ansatz die LĂ€ngenminimalitĂ€t eines kartenminimalen UND-Protokolls bewiesen (Koch, Schrempp und Kirsten, 2019). DarĂŒber hinaus werden konzeptionell einfache Protokolle fĂŒr den Fall einer sicheren Mehrparteienberechnung angegeben, bei der sogar zusĂ€tzlich die zu berechnende Funktion geheim bleiben soll (Koch und Walzer, 2018), und zwar fĂŒr jedes der folgenden Berechnungsmodelle: (universelle) Schaltkreise, binĂ€re Entscheidungsdiagramme, Turingmaschinen und RAM-Maschinen. Es wird zudem untersucht, wie Karten-basierte Protokolle so ausgefĂŒhrt werden können, dass die einzige Interaktion darin besteht, dass andere Parteien die korrekte AusfĂŒhrung ĂŒberwachen. Dies ermöglicht eine (schwach interaktive) Programm-Obfuszierung, bei der eine Partei ein durch Karten codiertes Programm auf eigenen Eingaben ausfĂŒhren kann, ohne etwas ĂŒber dessen interne Funktionsweise zu lernen, das ĂŒber das Ein-/Ausgabeverhalten hinaus geht. Dies ist ohne derartige physikalische Annahmen i.A. nicht möglich. ZusĂ€tzlich wird eine Sicherheit gegen Angreifer, die auch vom Protokoll abweichen dĂŒrfen, formalisiert und es wird eine Methode angegeben um unter möglichst schwachen Sicherheitsannahmen ein passiv sicheres Protokoll mechanisch in ein aktiv sicheres zu transformieren (Koch und Walzer, 2017). Eine weitere, in der Dissertation untersuchte physikalische Sicherheitsannahme, ist die Annahme primitiver, unkorrumpierbarer Hardware-Bausteine, wie z.B. einen TAN-Generator. Dies ermöglicht z.B. eine sichere Authentifikation des menschlichen Nutzers ĂŒber ein korrumpiertes Terminal, ohne dass der Nutzer selbst kryptographische Berechnungen durchfĂŒhren muss (z.B. große Primzahlen zu multiplizieren). Dies wird am Beispiel des Geldabhebens an einem korrumpierten Geldautomaten mit Hilfe eines als sicher angenommenen zweiten GerĂ€ts (Achenbach et al., 2019) und mit möglichst schwachen Anforderungen an die vorhandenen KommunikationskanĂ€le gelöst. Da das angegebene Protokoll auch sicher ist, wenn es beliebig mit anderen gleichzeitig laufenden Protokollen ausgefĂŒhrt wird (also sogenannte Universelle Komponierbarkeit aufweist), es modular entworfen wurde, und die Sicherheitsannahme glaubwĂŒrdig ist, ist die Funktionsweise fĂŒr den Menschen transparent und nachvollziehbar. Insgesamt bildet die Arbeit durch die verschiedenen Karten-basierten Protokolle, KalkĂŒle und systematisierten Beweise fĂŒr untere Schranken bzgl. der Kartenanzahl, sowie durch Ergebnisse zur sicheren Verwendung eines nicht-vertrauenswĂŒrdigen Terminals, und einer Einordnung dieser in eine systematische Darstellung der verschiedenen, in der Kryptographie verwendeten physikalischen Annahmen, einen wesentlichen Beitrag zur physikalisch-basierten Kryptographie
    corecore