5,871 research outputs found

    A Constrained Object Model for Configuration Based Workflow Composition

    Full text link
    Automatic or assisted workflow composition is a field of intense research for applications to the world wide web or to business process modeling. Workflow composition is traditionally addressed in various ways, generally via theorem proving techniques. Recent research observed that building a composite workflow bears strong relationships with finite model search, and that some workflow languages can be defined as constrained object metamodels . This lead to consider the viability of applying configuration techniques to this problem, which was proven feasible. Constrained based configuration expects a constrained object model as input. The purpose of this document is to formally specify the constrained object model involved in ongoing experiments and research using the Z specification language.Comment: This is an extended version of the article published at BPM'05, Third International Conference on Business Process Management, Nancy Franc

    If You're So Smart, Why Aren't You Rich? Belief Selection in Complete and Incomplete Markets

    Get PDF
    This paper provides an analysis of the asymptotic properties of consumption allocations in a stochastic general equilibrium model with heterogeneous consumers. In particular we investigate the market selection hypothesis, that markets favor traders with more accurate beliefs. We show that in any Pareto optimal allocation whether each consumer vanishes or survives is determined entirely by discount factors and beliefs. Since equilibrium allocations in economies with complete markets are Pareto optimal, our results characterize the limit behavior of these economies. We show that, all else equal, the market selects for consumers who use Bayesian learning with the truth in the support of their prior and selects among Bayesians according to the size of the their parameter space. Finally, we show that in economies with incomplete markets these conclusions may not hold. Payoff functions can matter for long run survival, and the market selection hypothesis fails.Market selection hypothesis, subjective beliefs, general equilibrium, incomplete markets, complete markets

    A family of droids -- Android malware detection via behavioral modeling: static vs dynamic analysis

    Full text link
    Following the increasing popularity of mobile ecosystems, cybercriminals have increasingly targeted them, designing and distributing malicious apps that steal information or cause harm to the device's owner. Aiming to counter them, detection techniques based on either static or dynamic analysis that model Android malware, have been proposed. While the pros and cons of these analysis techniques are known, they are usually compared in the context of their limitations e.g., static analysis is not able to capture runtime behaviors, full code coverage is usually not achieved during dynamic analysis, etc. Whereas, in this paper, we analyze the performance of static and dynamic analysis methods in the detection of Android malware and attempt to compare them in terms of their detection performance, using the same modeling approach. To this end, we build on MaMaDroid, a state-of-the-art detection system that relies on static analysis to create a behavioral model from the sequences of abstracted API calls. Then, aiming to apply the same technique in a dynamic analysis setting, we modify CHIMP, a platform recently proposed to crowdsource human inputs for app testing, in order to extract API calls' sequences from the traces produced while executing the app on a CHIMP virtual device. We call this system AuntieDroid and instantiate it by using both automated (Monkey) and user-generated inputs. We find that combining both static and dynamic analysis yields the best performance, with F-measure reaching 0.92. We also show that static analysis is at least as effective as dynamic analysis, depending on how apps are stimulated during execution, and, finally, investigate the reasons for inconsistent misclassifications across methods.Accepted manuscrip

    Planning in POMDPs Using Multiplicity Automata

    Get PDF
    Planning and learning in Partially Observable MDPs (POMDPs) are among the most challenging tasks in both the AI and Operation Research communities. Although solutions to these problems are intractable in general, there might be special cases, such as structured POMDPs, which can be solved efficiently. A natural and possibly efficient way to represent a POMDP is through the predictive state representation (PSR) - a representation which recently has been receiving increasing attention. In this work, we relate POMDPs to multiplicity automata- showing that POMDPs can be represented by multiplicity automata with no increase in the representation size. Furthermore, we show that the size of the multiplicity automaton is equal to the rank of the predictive state representation. Therefore, we relate both the predictive state representation and POMDPs to the well-founded multiplicity automata literature. Based on the multiplicity automata representation, we provide a planning algorithm which is exponential only in the multiplicity automata rank rather than the number of states of the POMDP. As a result, whenever the predictive state representation is logarithmic in the standard POMDP representation, our planning algorithm is efficient.Comment: Appears in Proceedings of the Twenty-First Conference on Uncertainty in Artificial Intelligence (UAI2005

    Likelihood-based inference of B-cell clonal families

    Full text link
    The human immune system depends on a highly diverse collection of antibody-making B cells. B cell receptor sequence diversity is generated by a random recombination process called "rearrangement" forming progenitor B cells, then a Darwinian process of lineage diversification and selection called "affinity maturation." The resulting receptors can be sequenced in high throughput for research and diagnostics. Such a collection of sequences contains a mixture of various lineages, each of which may be quite numerous, or may consist of only a single member. As a step to understanding the process and result of this diversification, one may wish to reconstruct lineage membership, i.e. to cluster sampled sequences according to which came from the same rearrangement events. We call this clustering problem "clonal family inference." In this paper we describe and validate a likelihood-based framework for clonal family inference based on a multi-hidden Markov Model (multi-HMM) framework for B cell receptor sequences. We describe an agglomerative algorithm to find a maximum likelihood clustering, two approximate algorithms with various trade-offs of speed versus accuracy, and a third, fast algorithm for finding specific lineages. We show that under simulation these algorithms greatly improve upon existing clonal family inference methods, and that they also give significantly different clusters than previous methods when applied to two real data sets

    Tandem: A Context-Aware Method for Spontaneous Clustering of Dynamic Wireless Sensor Nodes

    Get PDF
    Wireless sensor nodes attached to everyday objects and worn by people are able to collaborate and actively assist users in their activities. We propose a method through which wireless sensor nodes organize spontaneously into clusters based on a common context. Provided that the confidence of sharing a common context varies in time, the algorithm takes into account a window-based history of believes. We approximate the behaviour of the algorithm using a Markov chain model and we analyse theoretically the cluster stability. We compare the theoretical approximation with simulations, by making use of experimental results reported from field tests. We show the tradeoff between the time history necessary to achieve a certain stability and the responsiveness of the clustering algorithm
    corecore