3 research outputs found

    Content Sharing in Mobile Networks with Infrastructure: Planning and Management

    Get PDF
    This thesis focuses on mobile ad-hoc networks (with pedestrian or vehicular mobility) having infrastructure support. We deal with the problems of design, deployment and management of such networks. A first issue to address concerns infrastructure itself: how pervasive should it be in order for the network to operate at the same time efficiently and in a cost-effective manner? How should the units composing it (e.g., access points) be placed? There are several approaches to such questions in literature, and this thesis studies and compares them. Furthermore, in order to effectively design the infrastructure, we need to understand how and how much it will be used. As an example, what is the relationship between infrastructure-to-node and node-to-node communication? How far away, in time and space, do data travel before its destination is reached? A common assumption made when dealing with such problems is that perfect knowledge about the current and future node mobility is available. In this thesis, we also deal with the problem of assessing the impact that an imperfect, limited knowledge has on network performance. As far as the management of the network is concerned, this thesis presents a variant of the paradigm known as publish-and-subscribe. With respect to the original paradigm, our goal was to ensure a high probability of finding the requested content, even in presence of selfish, uncooperative nodes, or even nodes whose precise goal is harming the system. Each node is allowed to get from the network an amount of content which corresponds to the amount of content provided to other nodes. Nodes with caching capabilities are assisted in using their cache in order to improve the amount of offered conten

    From Compression of Wearable-based Data to Effortless Indoor Positioning

    Get PDF
    In recent years, wearable devices have become ever-present in modern society. They are typically defined as small, battery-restricted devices, worn on, in, or in very close proximity to a human body. Their performance is defined by their functionalities as much as by their comfortability and convenience. As such, they need to be compact yet powerful, thus making energy efficiency an extremely important and relevant aspect of the system. The market of wearable devices is nowadays dominated by smartwatches and fitness bands, which are capable of gathering numerous sensor-based data such as temperature, pressure, heart rate, or blood oxygen level, which have to be processed in real-time, stored, or wirelessly transferred while consuming as little energy as possible to ensure long battery life. Implementing compression schemes directly at the wearable device is one of the relevant methods to reduce the volume of data and to minimize the number of required operations while processing them, as raw measurements include plenty of redundancies that can be removed without damaging the useful information itself. This thesis presents a number of contributions in the field of compression of wearable-based data, mainly in areas of lossy compression techniques designated for the time series sensor-based data and positioning. In the scope of this work, two novel time-series compression techniques are proposed, namely Direct Lightweight Temporal Compression (DLTC) and Altered Symbolic Aggregate Approximation (ASAX), which are specifically designed to address relevant challenges of modern wearable systems. As many of the modern wearables also possess localization capabilities critical for navigation, tracking, and monitoring applications, reducing the computational and storage demands for indoor positioning applications is the second addressed challenge. Performing the positioning task quickly and efficiently on all connected devices, including wearables, becomes crucial in industrial applications, eHealth, or security. As the localization technique of choice in Global Navigation Satellite System (GNSS) signal-obscured scenarios, positioning via fingerprinting proves a reliable and efficient solution, while arising new challenges to be solved. Improving the efficiency of the fingerprinting-based system by applying lossy compressions onto the training radio map is realized by proposing, implementing, and evaluating various novel dimensionality-reduction techniques. This thesis proposes Element-Wise cOmpression using K-means (EWOK), a bitlevel compression based on element-wise k-means clustering, radio Map compression Employing Signal Statistics (MESS), a sample-wise compression that extracts signal statistics based on their locations, as well as evaluates feature-wise methods Principal Component Analysis (PCA) and Auto-Encoder (AE) that transform fingerprints into low-dimensional representation. The evaluation in the thesis shows the effectiveness of each compression scheme on 26 different datasets and provides the results achieved by combining the individual schemes together, accomplishing multi-dimensional radio map compression that sustains high positioning accuracy of the dataset, despite manyfold size reduction. The processing requirements of the positioning system are further addressed by proposing a cascade of models that reduces the required search space of the algorithm. By combining numerous Machine Learning (ML) architectures, it is capable of further reducing the positioning time (and thus, positioning effort), while improving the positioning performance. The thesis further includes the introduction of an indoor positioning dataset collected by the author, denoted TUJI 1, a novel performance metric to evaluate the latency caused by the lossy compression, and several crucial adjustments to the distance metric calculations, generalizing their applicability. The thesis provides novel insights into the compression of sensor-based, timeseries data and into reducing the computational effort of the fingerprinting positioning schemes while introducing a relevant number of novel and efficient solutions beyond the State-of-the-Art.Cotutelle -yhteisväitöskirj
    corecore