43,386 research outputs found

    Comprehensive measurement framework for enterprise architectures

    Full text link
    Enterprise Architecture defines the overall form and function of systems across an enterprise involving the stakeholders and providing a framework, standards and guidelines for project-specific architectures. Project-specific Architecture defines the form and function of the systems in a project or program, within the context of the enterprise as a whole with broad scope and business alignments. Application-specific Architecture defines the form and function of the applications that will be developed to realize functionality of the system with narrow scope and technical alignments. Because of the magnitude and complexity of any enterprise integration project, a major engineering and operations planning effort must be accomplished prior to any actual integration work. As the needs and the requirements vary depending on their volume, the entire enterprise problem can be broken into chunks of manageable pieces. These pieces can be implemented and tested individually with high integration effort. Therefore it becomes essential to analyze the economic and technical feasibility of realizable enterprise solution. It is difficult to migrate from one technological and business aspect to other as the enterprise evolves. The existing process models in system engineering emphasize on life-cycle management and low-level activity coordination with milestone verification. Many organizations are developing enterprise architecture to provide a clear vision of how systems will support and enable their business. The paper proposes an approach for selection of suitable enterprise architecture depending on the measurement framework. The framework consists of unique combination of higher order goals, non-functional requirement support and inputs-outcomes pair evaluation. The earlier efforts in this regard were concerned about only custom scales indicating the availability of a parameter in a range.Comment: 22 Page

    Ontology-based patterns for the integration of business processes and enterprise application architectures

    Get PDF
    Increasingly, enterprises are using Service-Oriented Architecture (SOA) as an approach to Enterprise Application Integration (EAI). SOA has the potential to bridge the gap between business and technology and to improve the reuse of existing applications and the interoperability with new ones. In addition to service architecture descriptions, architecture abstractions like patterns and styles capture design knowledge and allow the reuse of successfully applied designs, thus improving the quality of software. Knowledge gained from integration projects can be captured to build a repository of semantically enriched, experience-based solutions. Business patterns identify the interaction and structure between users, business processes, and data. Specific integration and composition patterns at a more technical level address enterprise application integration and capture reliable architecture solutions. We use an ontology-based approach to capture architecture and process patterns. Ontology techniques for pattern definition, extension and composition are developed and their applicability in business process-driven application integration is demonstrated

    Information standards to support application and enterprise interoperability for the smart grid

    Get PDF
    Copyright @ 2012 IEEE.Current changes in the European electricity industry are driven by regulatory directives to reduce greenhouse gas emissions, at the same time as replacing aged infrastructure and maintaining energy security. There is a wide acceptance of the requirement for smarter grids to support such changes and accommodate variable injections from renewable energy sources. However the design templates are still emerging to manage the level of information required to meet challenges such as balancing, planning and market dynamics under this new paradigm. While secure and scalable cloud computing architectures may contribute to supporting the informatics challenges of the smart grid, this paper focuses on the essential need for business alignment with standardised information models such as the IEC Common Information Model (CIM), to leverage data value and control system interoperability. In this paper we present details of use cases being considered by National Grid, the GB transmission system operator for information interoperability in pan-network system management and planning.This study is financially supported by the National Grid, UK

    A goal-oriented requirements modelling language for enterprise architecture

    Get PDF
    Methods for enterprise architecture, such as TOGAF, acknowledge the importance of requirements engineering in the development of enterprise architectures. Modelling support is needed to specify, document, communicate and reason about goals and requirements. Current modelling techniques for enterprise architecture focus on the products, services, processes and applications of an enterprise. In addition, techniques may be provided to describe structured requirements lists and use cases. Little support is available however for modelling the underlying motivation of enterprise architectures in terms of stakeholder concerns and the high-level goals that address these concerns. This paper describes a language that supports the modelling of this motivation. The definition of the language is based on existing work on high-level goal and requirements modelling and is aligned with an existing standard for enterprise modelling: the ArchiMate language. Furthermore, the paper illustrates how enterprise architecture can benefit from analysis techniques in the requirements domain

    From service-oriented architecture to service-oriented enterprise

    Get PDF
    Service-Oriented Architecture (SOA) was originally motivated by enterprise demands for better business-technology alignment and higher flexibility and reuse. SOA evolved from an initial set of ideas and principles to Web services (WS) standards now widely accepted by industry. The next phase of SOA development is concerned with a scalable, reliable and secure infrastructure based on these standards, and guidelines, methods and techniques for developing and maintaining service delivery in dynamic enterprise settings. In this paper we discuss the principles and main elements of SOA. We then present an overview of WS standards. And finally we come back to the original motivation for SOA, and how these can be realized

    Impliance: A Next Generation Information Management Appliance

    Full text link
    ably successful in building a large market and adapting to the changes of the last three decades, its impact on the broader market of information management is surprisingly limited. If we were to design an information management system from scratch, based upon today's requirements and hardware capabilities, would it look anything like today's database systems?" In this paper, we introduce Impliance, a next-generation information management system consisting of hardware and software components integrated to form an easy-to-administer appliance that can store, retrieve, and analyze all types of structured, semi-structured, and unstructured information. We first summarize the trends that will shape information management for the foreseeable future. Those trends imply three major requirements for Impliance: (1) to be able to store, manage, and uniformly query all data, not just structured records; (2) to be able to scale out as the volume of this data grows; and (3) to be simple and robust in operation. We then describe four key ideas that are uniquely combined in Impliance to address these requirements, namely the ideas of: (a) integrating software and off-the-shelf hardware into a generic information appliance; (b) automatically discovering, organizing, and managing all data - unstructured as well as structured - in a uniform way; (c) achieving scale-out by exploiting simple, massive parallel processing, and (d) virtualizing compute and storage resources to unify, simplify, and streamline the management of Impliance. Impliance is an ambitious, long-term effort to define simpler, more robust, and more scalable information systems for tomorrow's enterprises.Comment: This article is published under a Creative Commons License Agreement (http://creativecommons.org/licenses/by/2.5/.) You may copy, distribute, display, and perform the work, make derivative works and make commercial use of the work, but, you must attribute the work to the author and CIDR 2007. 3rd Biennial Conference on Innovative Data Systems Research (CIDR) January 710, 2007, Asilomar, California, US
    • ā€¦
    corecore