2,262 research outputs found

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Sustainable Forest Management Techniques

    Get PDF

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Mitigating the Event and Effect of Energy Holes in Multi-hop Wireless Sensor Networks Using an Ultra-Low Power Wake-up Receiver and an Energy Scheduling Technique

    Get PDF
    This research work presents an algorithm for extending network lifetime in multi-hop wireless sensor networks (WSN). WSNs face energy gap issues around sink nodes due to the transmission of large amounts of data through nearby sensor nodes. The limited power supply to the nodes limits the lifetime of the network, which makes energy efficiency crucial. Multi-hop communication has been proposed as an efficient strategy, but its power consumption remains a research challenge. In this study, an algorithm is developed to mitigate energy holes around the sink nodes by using a modified ultra-low-power wake-up receiver and an energy scheduling technique. Efficient power scheduling reduces the power consumption of the relay node, and when the residual power of the sensor node falls below a defined threshold, the power emitters charge the nodes to eliminate energy-hole problems. The modified wake-up receiver improves sensor sensitivity while staying within the micro-power budget. This study's simulations showed that the developed RF energy harvesting algorithm outperformed previous work, achieving a 30% improvement in average charged energy (AEC), a 0.41% improvement in average energy (AEH), an 8.39% improvement in the number of energy transmitters, an 8.59% improvement in throughput, and a 0.19 decrease in outage probability compared to the existing network lifetime enhancement of multi-hop wireless sensor networks by RF Energy Harvesting algorithm. Overall, the enhanced power efficiency technique significantly improves the performance of WSNs

    Wireless Sensor Network Based Monitoring System: Implementation, Constraints, and Solution

    Get PDF
    Wireless Sensor Network (WSN) is a collection of sensors communicating at close range by forming a wireless-based network (wireless). Since 2015 research related to the use of WSN in various health, agriculture, security industry, and other fields has continued to grow. One interesting research case is the use of WSN for the monitoring process by collecting data using sensors placed and distributed in locations based on a wireless system. Sensors with low power, multifunction, supported by a combination of wireless network, microcontroller, memory, operating system, radio communication, and energy source in the form of an integrated battery enable a monitoring process of the monitoring area to run properly. The implementation of the wireless sensor network includes five main parts, namely sender, receiver, wireless transmission media, data/information, network architecture/configuration, and network management. Network management itself includes network configuration management, network performance management, network failure management, network security management, and network financing management. The main obstacles in implementing a wireless sensor network include three things: an effective and efficient data sending/receiving process, limited and easily depleted sensor energy/power, network security, and data security that is vulnerable to eavesdropping and destruction. This paper presents a taxonomy related to the constraints in implementing Wireless Sensor Networks. This paper also presents solutions from existing studies related to the constraints of implementing the WSN. Furthermore, from the results of the taxonomy mapping of these constraints, new gaps were identified related to developing existing research to produce better solutions

    RF Energy Harvesting Wireless Communication: RF Environment, Device Hardware and Practical Issues

    Get PDF
    Radio frequency (RF) based wireless power transfer provides an attractive solution to extend the lifetime of power-constrained wireless sensor networks. Through harvesting RF energy from surrounding environments or dedicated energy sources, low-power wireless devices can be self-sustaining and environment-friendly. These features make the RF energy harvesting wireless communication (RF-EHWC) technique attractive to a wide range of applications. The objective of this article is to investigate the latest research activities on the practical RF-EHWC design. The distribution of RF energy in the real environment, the hardware design of RF-EHWC devices and the practical issues in the implementation of RF-EHWC networks are discussed. At the end of this article, we introduce several interesting applications that exploit the RF-EHWC technology to provide smart healthcare services for animals, wirelessly charge the wearable devices, and implement 5G-assisted RF-EHWC
    • …
    corecore