1 research outputs found

    How unconventional chaotic pseudo-random generators influence population diversity in differential evolution

    No full text
    This research focuses on the modern hybridization of the discrete chaotic dynamics and the evolutionary computation. It is aimed at the influence of chaotic sequences on the population diversity as well as at the algorithm performance of the simple parameter adaptive Differential Evolution (DE) strategy: jDE. Experiments are focused on the extensive investigation of totally ten different randomization schemes for the selection of individuals in DE algorithm driven by the default pseudo random generator of Java environment and nine different two-dimensional discrete chaotic systems, as the chaotic pseudo-random number generators. The population diversity and jDE convergence are recorded for 15 test functions from the CEC 2015 benchmark set in 30D. © Springer International Publishing AG, part of Springer Nature 2018.2018/177; IC406; MSMT-7778/2014, MŠMT, Ministerstvo Školství, Mládeže a Tělovýchovy; LO1303, MŠMT, Ministerstvo Školství, Mládeže a Tělovýchovy; 710577, Horizon 2020; CA15140; IGA/CebiaTech/2018/003; CZ.1.05/2.1.00/03.0089, FEDER, European Regional Development FundMinistry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme [LO1303 (MSMT-7778/2014)]; European Regional Development Fund under the Project CEBIA-Tech [CZ.1.05/2.1.00/03.0089]; Internal Grant Agency of Tomas Bata University [IGA/CebiaTech/2018/003]; COST ActionEuropean Cooperation in Science and Technology (COST) [CA15140, IC406]; SGS [2018/177]; VSB-TUO; EU's Horizon 2020 research and innovation programme [710577
    corecore