1,381 research outputs found

    Sensors and Wearables in Oncology: A study of the Barriers and Facilitators to Adoption

    Get PDF
    Innovation, although a subject of considerable debate (e.g., Baregheh et al., 2009; Christensen, 1997), can be defined as the introduction and dissemination of a new or a different idea into use or practice that drives impact (Solis and Sinfield, 2014). Many studies and editorials have highlighted the complexity of the United States health system and detailed the slow speed by which innovative ideas materialize into impactful innovations (Continuing America’s leadership (2017); England & Stewart (2007); Kannampallil, Schauer, Cohen & Patel (2011)). While there are many advances in sensor and wearable technologies in this instance, the adoption rate by oncologists has been slow. This slow or lack of adoption has a deep impact on the care, comfort, and potential survival of cancer patients. This study intends to describe barriers and facilitators to sensor technology adoption in oncology, then map those barriers and facilitators across two sets of stakeholders (oncologists and technologists). This qualitative study highlights key barriers including costs of technology, lack of time by oncologists, lack of communication between the two group, cultural and organizational factors, as well as global and policy factors. The enablers included the desire by both groups to work together for the benefit of the patients, as well as the need for tailored interventions leveraging an architected framework to propel this collaboration and align the stakeholders. The result of the study is a comprehensive conceptual framework and next steps detailed a short, medium, and long-term approach leading to adaptation, adoption, and diffusion. Being a first study of its kind, this can lead to further advancement in the field in terms of research and translational science

    Enhancing Free-text Interactions in a Communication Skills Learning Environment

    Get PDF
    Learning environments frequently use gamification to enhance user interactions.Virtual characters with whom players engage in simulated conversations often employ prescripted dialogues; however, free user inputs enable deeper immersion and higher-order cognition. In our learning environment, experts developed a scripted scenario as a sequence of potential actions, and we explore possibilities for enhancing interactions by enabling users to type free inputs that are matched to the pre-scripted statements using Natural Language Processing techniques. In this paper, we introduce a clustering mechanism that provides recommendations for fine-tuning the pre-scripted answers in order to better match user inputs

    Smart Healthcare solutions in China and Europe, an international business perspective

    Get PDF
    The thesis is part of the Marie Curie Fellowship project addressing health related challenges with IoT solutions. The author tries to address the challenge for the implementation of telehealth solutions by finding out the demand of the telehealth solution in selected European economies and in China (chapter 1), analyzing the emerging business models for telehealth solution ecosystems in China (chapter 2), how to integrate telehealth solutions with institutional stakeholders (chapter 3) and why are elderly users willing to use telehealth solutions in China. Chapter 1 and chapter 2 form the theoretical background for empirical work in chapter 3 and chapter 4. The thesis addressed four research questions, namely “Which societal and social-economics unmet needs that Internet of Healthcare Things can help to resolve?”, “What are the business model innovation for tech companies in China for the smart health industry?”, “What are the facilitators and hurdles for implementing telehealth solutions”, “Are elderly users willing to use telehealth solutions in China?”. Both qualitative study and quantitative analysis has been made based on data collected by in depth interviews with stakeholders, focus group study work with urban and rural residents in China. The digital platform framework was used in chapter 2 as the theoretical framework where as the stakeholder power mapping framework was used in chapter 3. The discretion choice experiment was used in chapter 4 to design questionnaire study while ordered logit regression was used to analyze the data. Telehealth solutions have great potential to fill in the gap for lack of community healthcare and ensuring health continuity between home care setting, community healthcare and hospitals. There is strong demand for such solutions if they can prove the medical value in managing chronic disease by raising health awareness and lowering health risks by changing the patients’ lifestyle. Analyzing how to realize the value for preventive healthcare by proving the health-economic value of digital health solutions (telehealth solutions) is the focus of research. There remain hurdles to build trust for telehealth solutions and the use of AI in healthcare. Next step of research can also be extended to addressing such challenges by analyzing how to improve the transparency of algorithms by disclosing the data source, and how the algorithms were built. Further research can be done on data interoperability between the EHR systems and telehealth solutions. The medical value of telehealth solutions can improve if doctors could interpret data collected from telehealth solutions; furthermore, if doctors could make diagnosis and provide treatment, adjust healthcare management plans based on such data, telehealth solutions then can be included in insurance packages, making them more accessible

    Context-aware gestural interaction in the smart environments of the ubiquitous computing era

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirements for the degree of Doctor of PhilosophyTechnology is becoming pervasive and the current interfaces are not adequate for the interaction with the smart environments of the ubiquitous computing era. Recently, researchers have started to address this issue introducing the concept of natural user interface, which is mainly based on gestural interactions. Many issues are still open in this emerging domain and, in particular, there is a lack of common guidelines for coherent implementation of gestural interfaces. This research investigates gestural interactions between humans and smart environments. It proposes a novel framework for the high-level organization of the context information. The framework is conceived to provide the support for a novel approach using functional gestures to reduce the gesture ambiguity and the number of gestures in taxonomies and improve the usability. In order to validate this framework, a proof-of-concept has been developed. A prototype has been developed by implementing a novel method for the view-invariant recognition of deictic and dynamic gestures. Tests have been conducted to assess the gesture recognition accuracy and the usability of the interfaces developed following the proposed framework. The results show that the method provides optimal gesture recognition from very different view-points whilst the usability tests have yielded high scores. Further investigation on the context information has been performed tackling the problem of user status. It is intended as human activity and a technique based on an innovative application of electromyography is proposed. The tests show that the proposed technique has achieved good activity recognition accuracy. The context is treated also as system status. In ubiquitous computing, the system can adopt different paradigms: wearable, environmental and pervasive. A novel paradigm, called synergistic paradigm, is presented combining the advantages of the wearable and environmental paradigms. Moreover, it augments the interaction possibilities of the user and ensures better gesture recognition accuracy than with the other paradigms

    Wearable sensor technologies applied for post-stroke rehabilitation

    Get PDF
    Stroke is a common cerebrovascular disease that is recognized as one of the leading causes of death and ongoing disability around the globe. Stroke can lead to losses of various body functions depending on the affected area of the brain and leave significant impacts to the victim’s daily life. Post-stroke rehabilitation plays an important role in improving the life quality of stroke survivors. Properly designed rehabilitation training programs can not only prevent further functional deterioration, but also helps patients gradually regain their body functionalities. However, the delivery of rehabilitation service can be a complex and labour intensive task. In conventional rehabilitation systems, the chart-based ordinal scales are considered the dominant tools for impairment assessment and the administration of the scales primarily relies on the doctor’s manual observation. Measuring instruments such as strain gauge and force platforms can sometimes be used to collect quantitative evidence for some of the body functions such as grip strength and balance. However, the evaluation of the patients’ impairment level using ordinal scales still depend on the human interpretation of the data which can be both subjective and inefficient. The preferred scale and evaluation standard also vary among institutions across different regions which make the comparison of data difficult and sometimes unreliable. Furthermore, the intensive manual supervision and support required in rehabilitation training session limits the accessibility of the service as the regular visit to qualified hospital can be onerous for many patients and the associated cost can impose an enormous financial burden on both the government and the households. The situation can be even more challenging in developing countries due to higher growing rate of stroke population and more limited medical resources. The works presented in this thesis are focused on exploring the possibilities of integrating wearable sensor and pattern recognition techniques to improve the efficiency and the effectiveness of post-stroke rehabilitation by addressing the abovementioned issues. The study was initiated by a comprehensive literature review on the latest motion tracking technologies and non-visual based Inertia Measurement Unit (IMU) had been selected as the most suitable candidate for motion sensing in unsupervised training environment due to its low-cost and easy-to-operate characteristics. Following the design and construction of the 6-axis IMU based Body Area Network (BAN), a series of stroke patient motion data collection experiments had been conducted in conjunction with the Jiaxing 2nd Hospital Rehabilitation Centre in Zhejiang province, China. The collected motion samples were then investigated using various signal processing algorithms and pattern recognition techniques to achieve the three major objectives: automatic impairment level classification for reducing human effort involved in regular clinical assessment, single-index based limb mobility evaluation for providing objective evidence to support unified body function assessment standards, and training motion classification for enabling home or community based rehabilitation training with reduced supervision. At last, the study has been further expanded by incorporating surface Electromyography (sEMG) signal sampled during rehabilitation exercises as an alternative input to enhance accurate impairment level classification. The outcome of the investigations demonstrate that the wearable technology can play an important role within a tele-rehabilitation system by providing objective, accurate and often realtime indications of the recovery process as well as the assistance for training management

    Practice Theory Approach to Wearable Technology. Implications for Sustainability

    Get PDF
    • 

    corecore