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ABSTRACT 

Stroke is a common cerebrovascular disease that is recognized as one of the leading causes 

of death and ongoing disability around the globe. Stroke can lead to losses of various body 

functions depending on the affected area of the brain and leave significant impacts to the 

victim’s daily life. Post-stroke rehabilitation plays an important role in improving the life 

quality of stroke survivors. Properly designed rehabilitation training programs can not only 

prevent further functional deterioration, but also helps patients gradually regain their body 

functionalities. However, the delivery of rehabilitation service can be a complex and labour 

intensive task. In conventional rehabilitation systems, the chart-based ordinal scales are 

considered the dominant tools for impairment assessment and the administration of the 

scales primarily relies on the doctor’s manual observation. Measuring instruments such as 

strain gauge and force platforms can sometimes be used to collect quantitative evidence for 

some of the body functions such as grip strength and balance. However, the evaluation of 

the patients’ impairment level using ordinal scales still depend on the human interpretation 

of the data which can be both subjective and inefficient. The preferred scale and evaluation 

standard also vary among institutions across different regions which make the comparison 

of data difficult and sometimes unreliable. Furthermore, the intensive manual supervision 

and support required in rehabilitation training session limits the accessibility of the service 

as the regular visit to qualified hospital can be onerous for many patients and the associated 

cost can impose an enormous financial burden on both the government and the households. 

The situation can be even more challenging in developing countries due to higher growing 

rate of stroke population and more limited medical resources. 

The works presented in this thesis are focused on exploring the possibilities of 

integrating wearable sensor and pattern recognition techniques to improve the efficiency and 

the effectiveness of post-stroke rehabilitation by addressing the abovementioned issues. The 

study was initiated by a comprehensive literature review on the latest motion tracking 

technologies and non-visual based Inertia Measurement Unit (IMU) had been selected as the 

most suitable candidate for motion sensing in unsupervised training environment due to its 

low-cost and easy-to-operate characteristics. Following the design and construction of the 6-

axis IMU based Body Area Network (BAN), a series of stroke patient motion data collection 

experiments had been conducted in conjunction with the Jiaxing 2nd Hospital Rehabilitation 

Centre in Zhejiang province, China. The collected motion samples were then investigated 

using various signal processing algorithms and pattern recognition techniques to achieve the 
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three major objectives: automatic impairment level classification for reducing human effort 

involved in regular clinical assessment, single-index based limb mobility evaluation for 

providing objective evidence to support unified body function assessment standards, and 

training motion classification for enabling home or community based rehabilitation training 

with reduced supervision. At last, the study has been further expanded by incorporating 

surface Electromyography (sEMG) signal sampled during rehabilitation exercises as an 

alternative input to enhance accurate impairment level classification. The outcome of the 

investigations demonstrate that the wearable technology can play an important role within a 

tele-rehabilitation system by providing objective, accurate and often realtime indications of 

the recovery process as well as the assistance for training management.  
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Chapter 1  

INTRODUCTION 

 

 

1.1 RESEARCH MOTIVATION 

Stroke is an acute cerebrovascular disease caused by haemorrhage or blockage in brain blood 

vessels. The cerebral ischemia as a direct consequence of stroke can lead to severe 

neurological damage and depending on the region affected, a number of impairment 

including muscle weakness, sensory loss, aphasia, cognitive problem and visuospatial 

dysfunction [1]. Stroke is known as one of the leading causes of death and ongoing disability 

in the world [2]. According to statistics, approximately 17 million people worldwide had a 

new or recurrent stroke incident in 2010, and 5.9 million deaths during the year were stroke 

related [3]. By 2010, there were also 33 million stroke survivors in the world and many of 

them are still suffering from stroke impairments and unable to live independently. This 

problem remains significant challenge for health care and rehabilitation institutes around the 

world. 

Post-stroke rehabilitation has been proven to be essential and effective in helping stroke 

patients to gradually regain part of their body functionality in numerous researches [4]. 

However, the influence of stroke is continuously rising with the aging population and the 

amount of health care expenditure contributes to stroke-related programs is also growing 

proportionately. In Australia, the average first-year cost per case for first-time Ischemic 

Stroke (IS) and Intracerebral Haemorrhage (ICH) stroke patients in 2004 were AU$6,022 

and AU$3,977 respectively. The lifetime cost per case for IS and ICH were estimated to be 

AU$57,106 and AU$49,995, which adds up to AU$1.7 billion and AU$232 million for the 

entire nation. It is also worth noting that the inpatient rehabilitation expenses have 

contributed 28.7% and 27.9% to the overall cost for each type of stroke [5].  
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In recent years, home-based and community-based Telerehabilitation (TR) training 

programs have attracted substantial amount of research attentions not only for cost reduction 

but also to improve rehabilitation outcome. Early Supported Discharge (ESD) is a widely 

recognized program which aims to accelerate discharge by providing comprehensive support 

for the patients to continue rehabilitation training in community or home setting [6-9]. ESD 

allows patients to train in a more familiar environment where they are going to perform 

Activities of Daily Living (ADL) and create a smoother transition [7]. However, how to 

maintain the intensity and quality of rehabilitation training in the environment with no or 

reduced supervision is one of the primary issues that must be addressed to ensure the best 

rehabilitation outcome.  

Apart from improving efficiency and accessibility, another challenge to be addressed in 

post-stroke rehabilitation is on improving the reliability and feasibility of the clinical 

assessments. The evaluation of patients’ body functioning such as motor function is 

considered as a crucial process in any post-stroke rehabilitation program. The deterioration 

of motor function can impact patient’s ability of independent living in various forms in 

addition to the reduction of muscle strength and dexterity. The rehabilitation intervention for 

each patient needs to be customized to target different type of impairments effectively [10, 

11]. By conducting motor function assessments throughout a rehabilitation program, 

clinicians can track their patients’ recovery progress and acquire evidence for improving 

individualized training prescriptions to ultimately optimize rehabilitation outcome. 

Conventionally, clinical evaluations have been manually performed by experienced 

clinicians using various chart-based ordinal scales such as Brunnstrom stage of recovery [12, 

13], Fugl-Meyer Assessment (FMA) [14], Barthel Index (BI) [15], and National Institutes 

of Health Stroke Scale [16]. Apart from the shortcoming of inefficiency, the lack of 

consensus also limits the usefulness of the conventional evaluation methods, which makes 

the comparison of patient’s data across different institutes and regions very difficult. In 2001, 

World Health Organization (WHO) presented the International Classification of Functioning 

Disability and Health (ICF) to serve as a comprehensive assessment framework that is 

designed to be used uniformly around the world. However, the implementation of ICF is 

also hindered by the subjective nature of the conventional methods as the evaluation standard 
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can vary between occasions [17]. Therefore to truly improve the efficiency and reliability of 

limb mobility evaluation in rehabilitation and realize unified classification standards, 

objective and quantitative assessment methods are required. 
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1.2 RESEARCH QUESTIONS  

 

The primary objective of the research in this thesis was to develop automatic and quantitative 

solutions to facilitate objective motor function assessment and unsupervised post-stroke 

rehabilitation using data collected with wearable sensors. In order to achieve optimal 

performance and feasibility for each application, various inputs including kinematic and 

physiological signals were investigated and analysed with specifically designed pattern 

recognition techniques. The detailed research questions, which were addressed in this thesis, 

are as follow: 

1. “Can widely-used and subjective ‘chart-based’ clinical assessments be replaced by 

objective and automatic approaches?” 

Conventional clinical assessments are heavily based on human experience that can be both 

inefficient and subjective. In order to solve these issues, a reliable computerized solution for 

objective motion quality assessment and impairment level classification is required. The 

expected solution should be able to automatically classify stroke patients’ impairment level 

based on widely used ordinal scales such as Brunnstrom stages of recovery. The system is 

expected to be low-cost and easy to operate to suit unsupervised rehabilitation settings. In 

order to prove the validity of the system, the automatic classification result should be 

checked against the rehabilitation expert’s manual assessment. 

2. “Can stroke patients’ limb mobility be assessed quantitatively using kinematic data 

collected during rehabilitation training?” 

The assessment of stroke patients’ limb mobility is also essential due to its close relationship 

with the ability of performing ADL. It can provide important evidences for individualizing 

rehabilitation interventions, which would ultimately maximize the training outcome. A 

mobility assessment system can also be substantially beneficial to routine training sessions 

by providing feedback on the patient’s motion quality and thus give additional drive and 

guidance to the patient. However, the subjective nature of manual assessment process and 

the lack of consistent evaluation measure have significantly limited the usefulness of the 
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result. The ordinal scale based evaluation methods which are designed for impairment level 

classification are labour intensive to implement and insensitive to the subtle changes in 

motor function. Therefore, they are not suitable to be applied in regular rehabilitation 

training sessions for providing feedback and tracking recovery progress. In order to realize 

a unified assessment standard and provide efficient and reliable evaluation of stroke patient’s 

limb mobility, a quantitative and objective metric system must be established.  

3.  “Can post-stroke rehabilitation training motions be classified accurately using an 

automatic system to facilitate unsupervised training?” 

The development of home and community-based telerehabilitation systems can be the key 

to counter the ever-increasing hospital healthcare expenditure. It also frees up medical and 

human resources and make rehabilitation service available to those who have difficulties to 

visit hospitals regularly. The efficiency of the system can be boosted further if the automatic 

monitoring and assessment techniques are integrated to replace the human supervision. 

However, one challenge must be dealt with first is how to identify the patient's motion 

adequately during a training session. The accuracy of the identification process is critical as 

most of the automatic evaluation techniques rely on it for database matching where a 

wrongly classified motion will certainly lead to misleading analysis and thus 

counterproductive feedback. The low-level supervision environment also requires the 

hardware setup of the monitoring system to be as simple as possible, yet robust to operate. 

4. “Does surface Electromyography recordings correlate with stroke patients’ motor 

impairment level that it can be used for automatic impairment classification?” 

Due to its non-invasive characteristic, in contrast to intramuscular electromyography (EMG), 

sEMG based system has been increasingly involved in the clinical process of evaluating 

motor function and detecting neuromuscular disorders. As an indicator of voluntary intention, 

sEMG is also frequently implemented in rehabilitation programs to evaluate patient’s 

recovery progress especially at the early stages when voluntary motions are hard to detect 

due to high flaccidity. In rehabilitation applications, sEMG measurements are 

conventionally taken and analysed by rehabilitation experts manually. In order to be 
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integrated with unsupervised post-stroke rehabilitation systems, the relationship between 

sEMG features and stroke recovery progress must be investigated and an automatic method 

is needed to be developed to perform classification based on widely recognized clinical 

scales, such as Brunnstrom stage of recovery.  
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1.3 SUMMARY OF CONTRIBUTIONS 

In pursuance of the answer to the aforementioned research questions, consecutive 

investigations on data sampling and analysis techniques have been carried out for each topic. 

Experiments with stroke patients at various recovery stages have also been conducted to 

validate the performance of the proposed solutions. The list presented below is a highlight 

of the major contributions of the studies discussed in this thesis.   

 The study of objective clinical scale assessment  

o A low-cost inertial measurement based wearable sensor network was 

developed to collect stroke patient’s upper-limb motion data. 

o Kinematic features that are related to Brunnstrom stages of recovery were 

extracted and investigated. 

o An Artificial Neural Fuzzy Inference System (ANFIS) was trained to 

automatically classify patient’s recovery progress in term of Brunnstrom 

stages.   

o The performance of the system was demonstrated in a cross-validation test 

with 200 motion data sets sampled from stroke patients whose Brunnstrom 

stages were evaluated by expert panel in prior to the experiment.  

 

 The study of quantitative limb mobility evaluation 

o A single index based metric system has been developed to quantitatively 

evaluate stroke patient’s upper-limb mobility based on the motion data 

collected during rehabilitation training. 

o The evaluation result can be used as a motion quality indicator to provide 

real-time feedback to the patients during training. At the same time, it can 

also give additional information to the clinician regarding patient’s training 

performance and adherence. 

o The mobility index is not only useful to reflect the quality of the motion but 

also found to be highly correlated with recovery progress. Therefore, the 

evaluation result can serve as a quantitative evidence to realize standardized 

stroke impairment assessment. 
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o The proposed index has demonstrated promising potential as input feature for 

automatic Brunnstrom stage classification in a test involving 21 stroke 

patients with various degrees of impairments.   

 

 The study of automatic training motion identification 

o  Six prevalent upper limb post-stroke rehabilitation training exercises have 

been compared and studied. 

o Kinematic features extracted from motion data have been ranked and selected 

based on their contribution to motion classification. 

o A fuzzy kernel motion classifier was specifically developed to achieve 

optimized classification performance. 

o The proposed motion classifier has demonstrated superior accuracy 

compared to other popular methods in a cross-validation test involving 531 

training motion data collected from 14 stroke patients with various degrees 

of impairment.  

 The study of sEMG based impairment level assessment 

o The single-channel sEMG sampled from stroke patient’s lateral deltoid 

during shoulder training exercise has been investigated. 

o The correlation between sEMG features from both time and frequency 

domain and stroke-induced impairment have been studied. 

o A fuzzy kernel classifier based on geometrically unconstrained membership 

function was specifically developed to automatically classify Brunnstrom 

stages based on the sEMG features. 

o A cross-validation test has been carried out with nine stroke patients. The 

result has demonstrated that the proposed sEMG approach can produce 

competitive result compared to kinematic data based methods. It also has the 

advantage of being able to classify patients with severe impairment whose 

motion feature cannot be adequately captured using inertia sensors.    
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1.4 THESIS ORGANIZATION 

 

The rest of the thesis is organized as follows: 

Chapter 2, Literature Review will provide a brief overview of current stroke rehabilitation 

systems, motion monitoring methods, and pattern recognition algorithms. 

Chapter 3, Automatic Impairment Level Classification will introduce a fuzzy inference 

system based method which automatically classifies stroke patient’s upper-limb impairment 

based on Brunnstrom stages of recovery. 

Chapter 4, Quantitative Limb Mobility Evaluation will present a single-index based metric 

system that measures stroke patient’s upper limb mobility in accordance with the level of 

impairment.  

Chapter 5, Training Motion Classification for Unsupervised Rehabilitation will present a 

fuzzy kernel motion classifier which can accurately classify various rehabilitation training 

motions performed by the stroke patients. 

Chapter 6, Impairment Classification Using Surface Electromyography will present an 

alternative approach which utilizes sEMG signal instead of kinematic measurement of the 

stroke patient during rehabilitation training to classify the level of impairment automatically. 

Chapter 7, Conclusion will summarize the research contributions and discuss the future work.     
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Chapter 2  

LITERATURE REVIEW 

2.1 STROKE AND REHABILITATION: A MEDICAL PERSPECTIVE  

2.1.1 STROKE 

Stroke or “brain attack” is a common acute cerebrovascular disease that is caused by 

haemorrhage or infarction induced cerebral blood supply interruption. In Figure 2-1, an 

illustration of the two major types of stroke is presented. Ischemic stroke, as depicted in the 

left drawing, is a result of artery blockage mainly due to the formation of thrombosis or 

emboli. The other less common but more deadly type of stroke is due to spontaneous 

bleeding inside the brain as illustrated in the drawing on the right.  During a stroke onset, 

the depression of cerebral circulation, increased intracranial pressure, and toxic effects of 

the released blood can cause severe damage to the brain tissues [18]. Due to its abrupt nature 

and serious consequences, stroke is considered as a medical emergency and requires 

immediate treatment of medications or neurosurgeries [4, 19-22]. Despite the consistent 

Figure 2-1. The illustrations of ischemic and haemorrhagic stroke (from: The internet 

stroke centre, www.strokecenter.org/patients/about-stroke, access Dec 2014) 

http://www.strokecenter.org/patients/about-stroke
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decrease of the mortality rate over the last decades, stroke is still one of the leading causes 

of death and ongoing disabilities [23]. Epidemiological studies have shown that stroke is the 

second most common cause of death after ischaemic heart disease which accounts for 9% of 

the overall deaths around the world [24-26]. It is also the third most common cause of 

disability-adjusted life-years (DALYs) [27]. By 2010, there were 17 million people with the 

first stroke incident and 5.9 million stroke-related deaths [25]. In total, the number of stroke 

survivors worldwide have exceeded 62 million, in which 55%-75% of them suffer from 

various degrees of body functioning impairment [28, 29]. The amount of health care 

expenditure associated with stroke is also rising rapidly due to the ever-growing stroke 

population. In industrialized countries, more than 4% of direct healthcare expenses are stroke 

related. In Australia alone, the average first-year cost per case for first-time Ischemic Stroke 

(IS) and intracerebral haemorrhage (ICH) stroke patients in 2004 were AU$6,022 and 

AU$3,977 respectively. The lifetime cost per case for IS and ICH were estimated to be 

AU$57,106 and AU$49,995 which add up to AU$1.7 billion and AU$232 million for the 

entire nation. It is also worth noting that the inpatient rehabilitation expenses have 

contributed 28.7% and 27.9% to the overall cost for each type of stroke [5].   

In developing countries like China, the economic development has brought significant 

changes to the peoples’ lifestyle. However, a substantial increase of stroke risk factors such 

as physical inactivity, obesity, hypertension, and diabetes have also taken place [30]. The 

lack of prevention and control policy, insufficient stroke care and rehabilitation resources, 

and relatively low personal income have created further challenges on stroke prevention and 

management [31]. In 2004, the average fee for stroke admission in China was 6,356 RMB 

(approx. AU$1,060), which was two times the average annual income of rural residents. The 

healthcare expenditure associated with stroke in public hospitals alone was 1.17 billion RMB 

(approx. AU$195 million) in 2003. The number is still rapidly growing at a rate of 117% per 

year and had reached 8.19 billion RMB by 2009 which imposed significant financial burdens 

to both the healthcare systems and societies [30-32].   

Most of the stroke survivors suffer from some degrees of long-term disabilities which 

reduces their overall quality of life. The impairment of central nervous system will suppress 
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cerebral electrical activity and thus result in loss of various body functions from muscle 

weakness to cognitive deficits depending on the location of the lesions [2, 3, 18].  One of the 

most common types of stroke induced disability is motor function impairments including 

hemiparesis, incoordination and muscle spasticity [33] and it is also the focus of the study 

discussed in this thesis. The motor function impairments can affect stroke patient’s motion 

on more than just muscle strength and dexterity. The upper motor neuron lesion can lead to 

imbalanced excitatory and inhibitory input to alpha motor neurons and cause abnormal 

muscle excitability or spasticity which can impose a significant limitation on patient’s 

motion [34]. An obligatory synergy pattern caused by neurological disorder can also be 

observed when stroke patients struggle to perform voluntary isolated joint movements [35]. 

As a result, motor impairment can greatly jeopardise stroke survivors’ ability of independent 

living. 

 

 

  



13 

 

 

 

 

2.1.2 POST-STROKE REHABILITATION 

Post-stroke rehabilitation is the procedure that aims at inducing positive changes to the 

neurological reformation process after stroke through active or passive exercises [4, 6, 8]. 

Despite the irreversible damage in the brain tissue, it is possible to partially regain the body 

functions via brain’s ability of reorganizing itself in response to intrinsic or extrinsic stimuli 

[36]. Post-stroke rehabilitation plays an important role in shaping the neurological changes 

during this remodelling process and maximize the positive outcomes [18, 37]. From a 

neuropsychology perspective, the rehabilitation process involves retraining the neural 

pathways or enabling new neural pathways to regain or improve neurological functioning 

that has been impaired in stroke incident [18]. In this section, the current understanding of 

the neurological process of post-stroke rehabilitation and techniques to improve recovery 

gains will be reviewed.  

2.1.2.1 Neuroplasticity  

Neuroplasticity is referring to the brain’s ability of “reorganizing its structure, function and 

connection… in respond to intrinsic or extrinsic stimuli” [36]. The ability of the brain to 

change or remodel itself based on experience forms the basis of the brain’s capacity to retain 

memory and improve functions. It is also proven to be the underlying mechanism of the post-

stroke recovery process [38]. The potential of neural plastic reform can vary based on a 

number of factors including the nature and the severity of the stroke, time after stroke, 

motivation, mood, levels of stress environment, and viable brain networks with plasticity 

capacity. Most patients can benefit from this process to subsequently recover part of their 

body functions. Substantial amount of researches have been dedicated to investigating this 

plastic phenomena [39-42]. Despite the governing rules of the neural network reconnectivity 

being mostly unknown, it has been discovered that the post-injury behavioural experience is 

considered “one of the most potent modulators of cortical structure and function…(and it is) 

critical to the reassembly of adaptive modules” [41, 43]. It is also believed that the rewiring 

process can be constantly shaped by repetitive behaviours and temporal coincidence [41, 44]. 

The behavioural experience can be classified into two major types depending on whether it 

is focused on the repetition of motor activity or skill acquisition. The neural plasticity 

associated are often referred as activity-dependent plasticity and learning dependent 
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plasticity [18, 45]. The activity-dependent plasticity can be achieved through constant 

practice of motor activity while learning-dependent plasticity required task-orientated 

training [45]. Both types of plasticity are considered essential in post-stroke recovery, and 

different rehabilitation training programs are developed to apply specific interventions as 

well as to facilitate the neural plasticity [37, 46-48]. 

2.1.2.2 Intensive Rehabilitation 

A number of studies have demonstrated that post-stroke motor recovery can benefit from 

intensified motor therapy [7, 49-52]. The result of a meta-analysis carried out by Kwakkel 

et al. [50], which involved twenty studies and 2686 stroke patients suggested that intensive 

rehabilitation therapy with more dedicated treatment time can lead to an enhanced and faster 

improvement of motor recovery, especially at the early stage of rehabilitation. Similar 

conclusion was reached in [51]: a study investigated the influence of therapy intensity in 

stroke rehabilitation as measured by Length of Stay (LOS) and functional independence. The 

result indicates that higher therapy intensity is associated with improved rehabilitation 

outcomes. The importance of repetitive voluntary movement based training has also been 

verified in many literatures [52-54] as the efficacy of post-stroke rehabilitation can be 

improved by engaging patients in repetitive exercises. A study conducted by De Wit et al 

has reported that the stroke patients in the German and Swiss rehabilitation centres tend to 

recover better compared to the patients in UK despite similar staff number and efficiency 

[55]. The analysis had shown that the difference was caused by the consistent delivery of 

more intense therapy in German and Swiss rehabilitation centres. Based on these findings, 

it can be concluded that the training intensity is correlated with the rehabilitation outcome. 

However, in order to ensure the high-intensity rehabilitation, more demanding management, 

and human supervision may be required which can potentially increase the cost. 

2.1.2.3 Early Support Discharge (ESD) 

The discharge planning and outpatient rehabilitation support also play an important role in 

rehabilitation programs that affects both the training efficiency and effectiveness. 

Unnecessarily prolonged hospital stay can increase the cost of  rehabilitation and occupy 

additional medical resources [56]. ESD is a program that accelerates the discharge process 
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and allowing patients to continue rehabilitation in the community and home settings [9, 57-

59]. Comprehensive interdisciplinary support must also be included in the program to ensure 

that the intensity and the quality of the rehabilitation training are at the required level.  Some 

of the obvious advantages of ESD includes cost reduction, freeing up hospital beds, and 

lowering the burden for caregivers [59]. Compared to the standard care, ESD can also 

improve patients’ ability to perform ADLs, achieve better satisfaction of services and 

accelerates the process of community reintegration [60, 61]. Reports can also be found in 

some studies that suggest ESD can also improve the functional recovery and reduce the risk 

of death by providing a smoother transition between acute care and rehabilitation [7, 61, 62].  
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2.1.3 TELEREHABILITATION  

In order to facilitate ESD and to provide support for home and community-based 

rehabilitation, telerehabilitation (TR) systems have been considered as a viable solution and 

attracted substantial amount of research attentions. The primary advantage of TR is being 

able to expand the coverage of the rehabilitation services and making the services accessible 

for patients who have difficulties to travel [63]. Many TR systems are developed on 

computer platforms that can be conveniently integrated with computer-aided systems to 

more efficient data management and service delivery [64, 65]. Moreover, TR systems can 

also enable one-to-many supervision that allows multiple patients to receive services from a 

single rehabilitation expert simultaneously and hence it significantly lowers the cost and 

improve the efficiency [66]. The idea of incorporating telecommunication technologies to 

deliver rehabilitation services outside hospital is not new to the field of rehabilitation 

medicine.  Currently, the majority of the systems are implemented using audio and video 

link technologies in which the communications between patients and medical staffs are 

established using conventional telephone or video-conference modules [64, 67-70]. In [68], 

a conventional TR system adopted for pressure ulceration management in patients with 

spinal cord injuries was described. A still-image videophone was used for communication 

between doctors, caregivers and patients. The doctor can provide remote direction to the 

caregivers in positioning the camera for taking adequate images of the patient for assessment.   

In order to improve the efficiency of supervision and data management, sensor and 

software aided systems have been introduced in recent years [71-73]. Figure 2-2 illustrated 

an example of the modern TR system that integrates wireless wearable sensor, video link, 

training management and data mining software systems.  By implementing various sensing 

devices, patients’ physical or physiological parameters can be collected in real-time during 

rehabilitation services and be accessed by the rehabilitation experts remotely for evaluation. 

As a result, the rehabilitation experts can have better understanding of patient’s progress and 

adjust training scheme accordingly to optimize the outcome. In [71], an artificial sensory 

system using wearable garments integrated with electroactive polymeric material were 

proposed to facilitate TR. The device was designed to perform strain sensing as well as 

mechanical actuation to support upper extremity rehabilitation outside hospital. In [74-76], 
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Virtual Reality (VR) technologies were implemented in post-stroke TR systems to improve 

the training efficiency and patient’s participation. The systems consisted only a PC with real-

world controller and video-camera. The patient was requested to complete motion tasks 

related to upper-extremity training in the virtual environment where the patient’s movements 

were animated and the therapists can supervise the training in real-time over a high-speed 

internet connection. The experiments were conducted to verify patient’s upper-extremity 

motor function improvement after the TR training and the results demonstrated significant 

gains as measured by clinical tests. Wearable inertia sensor and pressure sensor are also 

popular candidate in modern TR systems. In [77], a shoe-based sensing device that integrates 

accelerometer and pressure sensors is proposed to be used in TR systems for measuring 

stroke patient’s activity. By processing the kinematic and kinetic data collected by the two 

types of the sensors, the system is able to differentiate patient’s posture. The recorded data 

is used to reflect patient’s activity level and provide behavioural enhance feedback as part 

of a TR intervention. A more detailed review on the state-of-art TR systems with integrated 

wearable technology will be presented in the 2nd section of the chapter. 
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Figure 2-2. An illustration of wearable sensor integrated TR system 
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2.1.4 CLINICAL ASSESSMENT SCALES  

The clinical assessment of body function has been an important part of post-stroke 

rehabilitation. By conducting body function assessments throughout a rehabilitation program, 

the clinicians can track the patients’ recovery progress and customize the training 

prescriptions for optimal rehabilitation outcome. Conventionally, the assessments are 

performed manually by experienced rehabilitation experts using chart-based ordinal scales 

including Brunnstrom stage of recovery [12, 13], Fugl-Meyer Assessment(FMA) [14], 

Barthel Index [15] and National Institutes of Health Stroke Scale (NIHSS) [16]. Some scale 

measures disease and disability from a different aspect compared to the others and therefore 

utilize different assessment settings and procedures. A brief summary of popular assessment 

scales that are commonly used in stroke rehabilitation programs is provided below. 

2.1.3.1 Brunnstrom Approach 

Brunnstrom approach, as originally introduced in [12, 13], is a well-known measure for 

modelling the recovery process following stroke-induced hemiplegia. The method 

emphasizes on the progressive development of the motion synergic pattern during the 

rehabilitation process and divides the motor recovery process into six stages from the period 

of complete flaccidity which begins immediately after stroke to the disappearance of 

spasticity when the patient can perform near-normal to normal movement as presented in 

Table 2-1. 

Brunnstrom stages are very commonly adopted clinically to classify stroke patient’s 

rehabilitation progress due to its simplicity and validity [78-83]. Compared with other 

conventional measures with complex scoring systems that cover every detailed aspect of the 

patients’ condition such as Fugl-Meyer Assessment [84], the six-stage classification system 

of Brunnstrom approach is focused on the key factors closely associated with the 

rehabilitation progression including the degree of spasticity and synergies. The simplicity 

not only makes Brunnstrom classification one of the most favourable measures as a repetitive 

follow-up test during rehabilitation program, but also helps to improve the communication 

efficiency with patients by allowing them to effortlessly understand their recovery progress. 

The effectiveness of Brunnstrom approach has also been proven by many studies. In [85], 

Brunnstrom recovery stages were compared with spasticity measurement using Modified 
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Modified Ashworth Scale (MMAS) during an experiment involving 30 stroke patients, and 

the result showed a strong correlation between the Brunnstrom recovery stages and the 

MMAS scores. In [86], 46 stroke patients were monitored during a rehabilitation program, 

and Brunnstrom recovery stage was found highly sensitive to changes in patient's 

rehabilitation outcome and well correlated with measured Motricity Index (MI). Stroke 

patients are usually examined for Brunnstrom stages regularly since they are admitted to the 

rehabilitation facility in order to track their recovery progress. Currently, the classification 

process can only be performed by experienced physicians. The conclusion is derived directly 

by observing the amount of spasticity, synergy pattern and voluntary motion from the 

movements performed by patients. Such process is often inefficient and subject to human 

error, especially when the patient’s condition is near the boundary between the two 

Brunnstrom stages. The classification results are also vague and lack of quantification. In 

order to overcome such shortcomings, the possibility of introducing automated solution for 

objective classification of Brunnstrom Stages is investigated in this study. 

 

TABLE 2-1 BRUNNSTROM STAGES OF RECOVERY 

Stage Description 

Stage I Immediately after stroke onset; complete flaccidity; no voluntary movement. 

Stage II Initial stage of recovery; spasticity and obligatory synergies appear. 

Stage III 
Increased spasticity and synergy patterns; voluntary control of affected limb is 

possible but with limited range. 

Stage IV Spasticity and synergy patterns begin to decline; improved movement range. 

Stage V 
Further decline of spasticity; isolated joint movement without synergy pattern 

become possible 

Stage VI No apparent spasticity; near-normal to normal movement and coordination. 
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2.1.3.2 Fugl-Meyer Assessment (FMA) 

FMA scale, as first introduced by Fugl Meyer et al. in 1975, is another evaluation system 

which utilize cumulative numerical score to reflect stroke patient’s physical performance 

[87]. The FMA scale was developed largely based on the Twitchell and Brunnstrom’s multi-

stage model of post-stroke motor recovery [13, 14, 88]. Similar to Brunnstrom approach, 

Fugl Meyer’s method also stresses on the synergies developed during the post-stroke 

recovery process rather than solely rely on the conventional testing of muscle strength. 

However, FMA provides a more comprehensive evaluation scheme of patient’s overall 

impairment that consists of multiple independent assessment modules, including upper and 

lower extremity motor function, body balance, sensation qualities, passive range of motion 

and joint pain. The modules are further divided into items corresponding to specific body 

functions and each item is evaluated using a 3-point ordinal scale: 0 for complete loss of 

function, 1 for partial loss of function and 2 for fully functional. Overall, there are 266 points 

possible, and an increase in total score can be seen as an indicator for partial or overall body 

function improvement during rehabilitation. An example of the FMA score sheet as 

introduced in Sanfor et al.’s paper [89] is shown in Figure 2-3. 

The assessment of FMA score usually involves a stroke patient performing a series of 

pre-defined tasks under the supervision of a professionally trained physical therapist and 

then the numerical scores for each item is given based on the therapist’s observation. 

Different assessment tasks are designed to demonstrate various aspects of patient’s body 

function. Different muscle groups are first elicited to test reflex activities. Volitional 

extension and flexion movements for multiple joints are then performed to exam motor 

functions. The patients are also required to perform fast-paced motions and to maintain 

certain postures to show their coordination and balance. The sensation scores are measured 

in two forms: the first one is to examine patient’s ability to sense light touches on various 

body parts, and the second one is to test if patient can sense the position of various joints 

without the help of another sensory input e.g. visual. At last, range of motion (ROM) is tested 

on different joints and the occurrence of pain is recorded [87].  
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FMA scale has also been widely used in both clinical and research settings for decades 

and a number of researches have been carried out to investigate the reliability and validity 

of the method [14, 89, 90]. In the original work conducted by Fugl Meyer et al, 28 patients 

with stroke and hemiplegia were included in a clinical trial to evaluate the validity of FMA 

and 15 patients remained to be followed through at least half a year. All patients’ body 

functions were evaluated using a selective FMA scale at the beginning of the study, and then 

they were re-examined at a regular interval subsequently. The result of the study showed 

that all remaining patients in the follow-up study had demonstrated some degree of positive 

progress reflected on FMA score despite some disturbance caused by undercurrent 

complications that had jeopardized the recovery of some individuals. The multi-stage 

development observed from the long term FMA result also matches the findings of Twitchell 

[88] and Brunnstrom, which supports the validity of the method.  The author also believes 

that the 3-point scale together with rigidly standardized procedure had minimized the chance 

of error and thus ensured high reliability [13]. In another research conducted by Wood-

Dauphinee et al., FMA scale was compared with a neurologic status scale, a stroke severity 

scale, the Barthel index (BI) and the Level of Rehabilitation Scale (LoRS) using the data 

from a clinical trial with 167 stroke patients [90]. The result demonstrated a significant 

correlation between the outcome of different measures and between subscale scores and the 

total scores of FMA. However, it is also suggested that FMA has a high coefficient of 

variation compared to BI, which makes it less efficient as more subjects would be required. 

In a review written by Gladstone et al. [14], the sensitivity, reliability, validity and 

responsiveness have been thoroughly discussed. By summarizing the result from a number 

of clinical studies, the author has drawn the conclusion that despite the shortcomings such 

as the inclusion of subjective items in sensation measurement, overweighted upper extremity 

score, lack of finger movement assessment, and the redundancy in the joint pain 

measurement, FMA is still a feasible and important clinical and research tool for evaluating 

changes in post-stroke motor impairment. 
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Figure 2-3. FMA score sheet (Sanford et al, 1993) 
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2.1.3.3 Barthel Index (BI) 

Different from Brunnstrom stages and FMA scale, Barthel scale or BI is an ordinal scale that 

is focused on measuring patient’s performance and independence in ADL such as dressing 

and cleaning. As originally introduced in [15], BI is comprised of 10 variables or items that 

are individually assessed based on the patient’s ability on performing ten different activities. 

The evaluation of the BI is observation based, and each item is graded into three different 

levels: inability to complete the task, completion with assistance, and completion without 

assistance. The relatively simplistic scoring system of the original BI provides low training 

and implementation complexity to ensure a high inter-rater reliability and repeatability [91-

93]. However, this design is considered ineffective to detect small changes in functional 

independence [94]. The lack of sensitivity issue is addressed in the modified versions of BI 

where multi-point scoring systems are adopted [93-95]. The items included in BI are listed 

below: 

 Personal hygiene/grooming 

 Bathing 

 Feeding 

 Toilet use 

 Stair climbing 

 Dressing 

 Bowel control 

 Bladder control 

 Mobility 

 Wheelchair/chair to bed transfer 

BI and its modified versions are widely recognized as the most reliable and the most 

frequently cited ADL assessment tools [92, 93, 96]. Apart from assisting clinical decision-

making, BI is also often adopted to evaluate the efficacy of medical treatments and 

rehabilitation programs [97-99]. The validity and reliability of BI are investigated in a 

number of researches [91, 100-102]. Collin et al. conducted a research comparing the BI 

score obtained using four different rating methods including self-report from the patient or 
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relative, report from nurse after at least one shift, direct observation from a trained nurse and 

an occupational therapist [91]. The result showed a statistically significant coefficient of 

concordance between scoring results from different rating method and all four methods can 

produce reliable results. Therefore, it is suggested that BI can be obtained efficiently and 

reliably by querying informed nurse and patient’s relative. However, the usage of BI is not 

without pitfalls. In Collin’s study, the author also pointed out that discrepancies exist when 

evaluating individual items as a result of different interpretation of the evaluation criteria 

which has not been uniformly standardised. In a review study conducted by Geert et al., the 

lack of consensus on the clinical relevance of the BI total score is believed to be a major 

problem which can hinder the design, the interpretation, and the comparison of the acute 

stroke trials [102]. Another limitation of BI is that the environment factor can dramatically 

affect the evaluation result, and it often varies between cases [15]. Therefore, the BI results 

from different trials may not always be comparable. It has also been reported that BI 

produces extraordinarily high internal consistency which might be an indication of 

redundancy within items e.g. personal hygiene and bathing [103].   

Overall, BI is a reliable and valid ADL scale that can be implemented efficiently. The 

relatively short assessment time and administration simplicity makes BI suitable to be 

repetitively tested during a rehabilitation program, and thus it is considered a suitable tool 

for tracking the patient’s recovery progress over time [95]. The BI’s advantage of 

maintaining reasonable reliability even when it is conducted through patient’s self-report or 

phone interview also makes it particularly useful in clinical or research situations when direct 

follow-up assessment is not applicable [91]. However, the ambiguous assessment criteria 

and the absence of the environment factor correction can reduce its reliability in settings with 

independent raters and varying environments like multicentre clinical trials. 

2.1.3.4 National Institute of Health Stroke Scale (NIHSS) 

NIHSS is another widely used stroke scale that measures the patient’s impairment from 

neurological functioning perspective. There are 11 key items covered in a standard NIHSS 

examination i.e. level of consciousness, gaze (extraocular movement), visual fields, facial 

palsy, upper and lower extremity motor function, limb ataxia (coordination), sensory 



26 

 

 

 

 

function, language (aphasia), speech (dysarthria) and inattention (neglect). Each item can be 

assigned a score up to 4 to reflect the degree of impairment and the total maximum score is 

42 (or 31 in the modified version) which represents the most severe level of stroke or a 

comatose state [104]. The assessment of the scale is designed to be conducted only through 

direct observation/examination by trained professionals. Compared to BI, NIHSS provides 

more comprehensive and detailed guidelines on assessment protocol e.g. specific questions 

to be asked for measuring the level of consciousness and naming sheet/picture to be used for 

evaluating aphasia. Video training and certification are also available to improve the 

standardization of the procedure [105]. The clinical relevance of the NIHSS score is well 

established, and the total NIHSS score has been successfully implemented to derive stroke 

acuity, lesion size and prognostic information in several researches [106-108].   

The rigorous assessment criteria of NIHSS ensures its excellent reliability and validity, 

which makes it a popular candidate for various clinical and research applications. First of all, 

it is considered as a sensitive tool for tracking post-stroke neurological changes. In Young 

et al.’s work [109], NIHSS is proven to be more sensitive than BI and modified Rankin Scale 

in measuring a simulated treatment effect and it allows smaller sample sizes or greater 

statistical power. NIHSS is considered as an important intervention evaluation tool 

especially in studies related to thrombolytic therapy [110]. In the t-PA study conducted by 

National Institute of Neurological Disorders and Stroke (NINDS) [111, 112], a random 

control trial of recombinant tissue plasminogen activator (rt-PA) for patients with acute 

ischemic stroke, NIHSS was adopted to evaluate the efficacy of the treatment. A change of 

2 points or more on the total score of NIHSS was used as an indicator of a clinically relevant 

change of patient’s condition [110]. NIHSS also has great value as a predictor of post-stroke 

hospital disposition [113]. It is believed that NIHSS score can provide prognosis information 

even at early stage of admission of acute stroke patient where BI usually fails to perform due 

to the floor effect of its scoring criteria [110]. As observed in [113], patients with NIHSS 

lower than 5 are most likely to be discharged home after acute care whereas a score greater 

than 13 at the time of admission suggest a greater chance that long-term care in nursing 

facilities will be required. However, NIHSS has lower sensitivity on single function items 
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such as limb motor function and requires the aid of function assessment or ADL scales to 

measure the outcome of post-stroke rehabilitation comprehensively.  

2.1.3.5 Wolf Motor Functional Test 

Wolf Motor Functional Test (WMFT) is another assessment of upper extremity motor ability 

that is commonly implemented in stroke and traumatic brain injury rehabilitation 

applications [114, 115]. However, in contrast to the other manual inspection or interview 

based assessments, WMFT utilizes timed task to evaluated stroke patients’ upper limb 

function quantitatively.  The original version of WMFT consisted of 21 items, which was 

reduced to 17 in the widely used modified version. It mainly tests three aspects of stroke 

patients’ motor function: dexterity, functional ability and strength. The examiners always 

test the less affected upper extremity followed by the most affected side for comparison 

purpose. The Wolf system uses a six-point ordinal scale where a 0 indicates no voluntary 

intention detected for completing the tasks, and a 5 indicates normal arm function. The 

assessment has a maximum score of 75 where the lower scores suggests lower functioning 

levels.  

The validity of WMFT is verified in a number of researches. In one of the original 

researches conducted by Wolf et al [115], WMFT and upper extremity FMA were evaluated 

for 19 stroke patients and 19 age-matched healthy participants by 2 random raters. The 

assessment result demonstrated high interrater reliability and significant correlation can be 

observed from the two scales. In [114], Morris et al, investigated the test-retest reliability of 

WMFT in addition to interrater reliability in an experiment involving 24 stroke subjects. The 

15 functional tasks were performed by each subject in two tests with a 2-week interval, the 

scoring was carried out at a later time by blinded therapists based on the video recordings. 

The results have proven that WMFT has adequate test-retest reliability and interrater 

reliability in all three domains. Overall, WMFT is a reliable assessment tool, which also has 

relatively high sensitivity to upper extremity function changes. However, the performance 

of WMFT require dedicated testing tasks and setup, and thus it is difficult to be integrated 

into routine training sessions using automatic assessment systems. 
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2.1.3.6 International Classification of Functioning, Disability and Health (ICF) 

Despite various guidelines that have been published by local and international organizations 

as an effort to standardise stroke impairment assessment and to provide recommendation on 

different aspects of rehabilitation process, a unified framework which can be applied across 

different region, discipline, and perspectives is still lacking [6, 8, 116-118]. The WHO 

International Classification of Functioning, Disability and Health (ICF) was created to fulfil 

the gap and serves the purpose of being a universal ‘language’ that can be understood by 

health professionals, researchers, policy makers, patients and patient organizations.  

ICF is a classification tool which considers human health and well-being in a broad 

picture that covers various perspectives of functional status from body structure to living 

environment instead of solely focusing on a certain health condition [119]. As a 

comprehensive framework, ICF consists of two major parts: Functioning and disability, and 

Contextual Factors. The first part covers the aspects of body functionality and structure as 

well as the subject’s ability to conduct daily activities and to be involved in different life 

situations. An ICF assessment will investigate not only the level of impairment to patient’s 

body, but also the restrictions and the limitations that affect patient’s life quality. The second 

part of ICF discusses the contextual factors including the environmental and personal factors 

that may either facilitate or obstruct patient’s performance in daily activities or life situations.  

ICF can be further broken down into lower level components as illustrated in Figure 2-4. For 

each detailed 1st to 4th level components, one or more qualifiers can be assigned to describe 

the severity of impairment or the extent of influence, therefore, the comparison of data across 

subjects, disciplines and regions becomes possible. ICF also provides a coding system based 

on the hierarchical structure by combining the part prefix, category code and the qualifiers 

that can be used in health informatics systems. 

To apply the ICF assessment in clinical environments, WHO has also published 

supporting practical instruments such as WHO Disability Assessment Schedule (WHODAS) 

and ICF checklist. However, the comprehensive ICF includes over 1400 categories which 

can be very time-consuming to complete. To improve the clinical practicability, ICF core 

sets have been developed to cover smaller groups of categories which are relevant to certain 
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health condition such as stroke and thus greatly reduce the amount of time required to 

conduct an assessment.  The ICF core set for stroke was developed in 2004 by conducting a 

Delphi method based consensus process with international experts from different 

backgrounds [120]. Altogether, 166 2nd level categories were included in the current version 

(extended version) with 59 categories from the component body function, 11 from body 

structures, 59 from activities and participation and 37 from environmental factors [121]. 

Despite its relatively small size, the selection of categories has a very comprehensive 

coverage of the typical problems that could be involved from post-stroke body function 

impairment to attitudes of society and surrounding individuals.  After years of development 

and validation, the ICF core set for stroke started to become a multi-professional assessment 

standard and its feasibility has been validated and acknowledged in a number of researches 

[122-125].  

However, the implementation of ICF is also hindered by the subjective nature of the 

human experienced based assessment. The reliability of the ICF qualifier evaluation has been 

questioned in a number of literatures due to the lack of unified evaluation standard [17, 126, 

127]. Therefore, an automatic and quantitative standard evaluation method is much needed.  
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Figure 2-4. Structure of ICF 
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2.1.3.7 Clinical Assessment Scales Summary 

For decades, the chart-based assessment scales are the primary tools for post-stroke 

impairment assessment. However, the conventional human experience based methods are 

not only inefficient, but are also lacking in consensus between assessors, which results in 

relatively low interrater reliability. The discrepancies in the selection of clinical scale is 

another limiting factor that increases the difficulty of comparing of patient’s data across 

different institutes and regions. There are a large amount of different body function 

assessment scales in addition to the ones introduced in this thesis. As summaries by 

Rehabilitation Measure Database [128], there are over 300 assessment processes current 

used in rehabilitation programs around the globe. In Table 2-2, a list of commonly used 

assessment scale is presented for comparison. Although most of the assessment scales varies 

in evaluation methods, nevertheless, they still largely overlap in feature and scope. ICF has 

been developed as a unified standard to address the issue of inconsistency in clinical 

assessment. However, it still relies heavily on manual examination and questionnaires. As a 

result, the assessment result will inevitably subject to human error and inconsistent 

evaluation standards. In order to improve the efficiency and reliability of motor function 

assessment in post-stroke rehabilitation, automatic and objective assessment methods are 

required. 
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TABLE 2-2 LIST OF COMMON CHART-BASED SCALES FOR POST-STROKE REHABILITATION 

Title of Scale Assessment Scope Application Assessment Type / 

Complexity 

Brunnstrom 

Stages of 

Recovery 

Motor recovery Stroke Professional inspection / Low 

complexity – 6-grade scale for 

upper and lower extremities 

FMA ADL; motor 

recovery; balance; 

sensation; pain 

Stroke Professional inspection / High 

complexity – 3-grade scales with 

155 items across 5 domains 

BI ADL Brain injury; geriatrics; 

stroke 

Self-report or interview / Low 

complexity – 3-grade scales for 

10 ADL items 

NIHSS Comprehensive (body 

functioning 

impairments) 

Stroke Professional inspection / High 

complexity –  multi-grade (up to 

5), 11 items  

Glasgow 

Coma Scale 

Consciousness Conditions involve 

coma (brain injury; 

stroke) 

Interview / Low complexity – 6-

grade scale for 3 domains 

Ashworth 

Scale 

Muscle spasticity Cerebral Palsy (CP); 

Multiple Sclerosis 

(MS); brain injury; 

stroke 

Inspection / Low complexity – 6-

grade scale for each affected 

muscle/joint 

Functional 

Assessment 

Measure 

ADL Brain Injury; geriatrics; 

MS；stroke 

Professional Inspection / High 

complexity – 7-grade scale with 

30 items 

Wolf Motor 

Function Test 

Upper extremity 

motor function 

(dexterity and 

strength) 

Stroke; brain injury Professional Inspection (timed 

tasks) / High complexity – 6-

grade scale with 21 items across 

3 domains 

ICF Comprehensive 

(body impairments 

and contexture 

factors) 

Comprehensive 

(disease, disability 

and other health 

related conditions) 

Professional Inspection / High 

complexity – multi-grade scale 

with over 1400 categories 

(Comprehensive set, core sets 

available for some conditions) 
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2.1.5 CLINICAL ASSESSMENT TOOLS 

In addition to visual inspection and interview, quantitative measurements such as stride 

length, joint range of motion, and time for completing specific task are also commonly 

adopted to improve the reliability and validity of clinical assessments and support medical 

decisions. Apart from generic tools like ruler, goniometer, and stopwatch, specifically 

designed biomechanical instruments such as grip dynamometer and balance board are often 

required for measuring specific body function parameters. In this section, some of the 

clinical assessment tools that are widely implement in post-stroke rehabilitation are reviewed. 

2.1.5.1 Strain gauge and dynamometer 

Figure 2-5. A Jammer grip dynamometer 

(http://www.prohealthcareproducts.com/jamar-plus-digital-hand-dynamometer/) 
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Strain gauge and dynamometer are instruments for force and power measurement. In post-

stroke rehabilitation, the muscle strength is a critical parameter to be monitored and trained 

as it can significantly affect the quality of ADL performance such as walking and dressing. 

One of the most frequently used force measurement tool is a hand dynamometer as shown 

in Figure 2-5. It quantifies the patient’s grip strength by measuring the maximum force that 

the user can apply by gripping the handle and the result can facilitate hand function related 

clinical assessments. In a post-stroke rehabilitation related study conducted by Bohannon 

[129], the adequacy of hand dynamometer for characterizing upper extremity strength during 

stroke recovery was investigated. A Jamar grip dynamometer was used to collect grip 

strength data from 26 stroke patients. The elbow flexion and shoulder abduction strength 

was also measured for comparison using MicroFET dynamometer. The result suggested that 

the grip strength measured was statistically adequate for characterizing the limb strength in 

post-stroke patients and significant correlation was found between force measurements at 

the different parts of the limb. The grip dynamometer are also used for analysing hand 

muscle atrophy. In a research conducted by Triandafilou et al. [130], the index finger 

musculature of 25 stroke survivors and 10 age-matched healthy control subjects were studied 

and compared to find quantified evidence for atrophy. The maximum voluntary power grip 

force of the stroke patients were quantitatively assessed using a Jammer hand dynamometer 

to determine their hand strength deficits and ultrasonography was used to measure the 

muscle thickness and cross section area during the experiment. The result showed that the 

muscle size in the paretic hand of stroke patients was significantly reduced with respect to 

the muscle size in the non-paretic hand. Another significant implementation of 

dynamometries in post-stroke rehabilitation is to assess the amount of muscle spasticity. In 

[131], Pierce et al. investigated the test-retest reliability of isokinetic dynamometry in knee 

flexor and knee extensor muscle spasticity assessment for CP patients. The peak resistive 

torque and work were measured for each subjects using an isokinetic dynamometer, and 

acceptable relative test-retest reliability was obtained by calculating intraclass correlation 

coefficient. Similar study was conducted by Cetin et al. [132] and the test-retest reliability 

was verified for wrist spasticity assessment in stroke patients using an isokinetic 

dynamometer. The experiment involved 21 chronic stroke patients with 20 age-matched 
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healthy control subjects. The spasticity was assessed using the Ashworth Scale and a 

computerized dynamometer was adopted to measure the subjects’ resistance produced 

during wrist flexion and extension movement. The result showed a significant correlation 

between Ashworth scale grades, dynamometric scores, and calculated torque. Intra-class 

correlation coefficient was also obtained, and it indicated that the dynamometric approach 

can provide relatively high reproducibility when used as a spasticity assessment tool for 

post-stroke rehabilitation.  

2.1.5.2 Balance board 

Balance is an important quality in post stroke rehabilitation. The loss of balance is a common 

stroke impairment and it has severe impact on the stroke patient’s life quality and 

independence as it limits their ability of performing critical ADL including bathing, dressing, 

and toileting and walking. Balance is also a major domain of post-stroke assessment which 

is covered in dedicated scales like Berg balance scale and comprehensive scales like FMA 

and ICF. Specialized tools are sometimes adopted in clinical assessment to measure balance 

quantitatively and also provide feedback for rehabilitation trainings. One of the most 

common balance measurement tools is a balance board. As shown in Figure 2-6, balance 

board is a standing platform that can measure the user’s weight distribution and centre of 

gravity, which can provide valuable information about the user’s posture. In [133], Clark et 

al. conducted a research to investigate the validity and reliability of Wii balance board, a 

low-cost commercial balance board as can be seen in Figure 2-6, as an assessment tool for 

measuring standing balance. The Wii balance board was used to examine single and double 

leg standing balance for 30 subjects, and its performance is compared with laboratory-grade 

force platform. The experiment result demonstrated that Wii balance board was a valid and 

reliable tool for clinical assessment of standing balance. The Wii balance board was 

implemented for post-stroke static and dynamic balance assessment in [134].  Thirty stroke 

patients were examined for static standing balance, weight distribution and dynamic 

mediolateral weight shifting using the balance board. The result was compared with 

conventional clinical tests including 10-metre walk test and step test, and strong correlation 

was found between mediolateral weight shifting and step test. Intraclass correlation 
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coefficient calculation also proved that the balance board test was highly reliable between 

testing occasions. 

 

2.1.5.3 Gait Analysis Systems 

In post-stroke rehabilitation, gait analysis detects the walking pattern and posture that is 

unique to hemiplegic patients at different recovery stage and it is another area in clinical 

assessment that often require specialized tool for quantitative data acquisition. In contrast to 

the strength and balance test, gait analysis requires more comprehensive kinematics data and 

it is not uncommon that multiple types of measurement are used in conjunction. As 

demonstrated in Figure 2-7. Pressure plates based system is also commonly adopted in gait 

analysis. However, more precise pressure distribution is required compared to balance test 

and the measurement generally covers a certain walking distance which requires a pressure 

sensing mat. Another system that is often used in gait analysis is visual based motion tracking 

systems. Instead of directly sensing the weight transfer, the optical systems captures the 

walking pattern and posture using multiple cameras with visual marker as illustrated in 

Figure 2-8. By combining the two approach, both kinetic and kinematic data can be collected 

at the same time to construct a comprehensive record of the patient’s waking pattern. In a 

Figure 2-6. A commercial balance board “Wii Fit” by Nintendo 

(http://scopeblog.stanford.edu/2010/01/26/wii_fit_board_f/) 
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research conducted by Bensoussan et al. [135], pressure plate based sensing device and 

visual-based motion sensing system are used together to investigate the motion and force 

asymmetries in stroke patient’s gait initiation pattern. A 6-camera optoelectronic system was 

used to sample the kinematic information at 100Hz and the kinetic information was recorded 

using two strain gauge based force plate at 500 Hz. By analysing the multiple gait features 

captured by the two systems including stride and step length, phase duration, force, weight 

transfer, and joint motion range, the researchers were able to determine how asymmetrical 

adaptive posture-motor strategies were developed in stroke patients to compensate for the 

impairment. 

 

2.1.5.4 Clinical Assessment Tools Summary 

By taking quantitative measurement using specialized tools, the reliability and validity of 

human inspection based clinical assessments can be improved. However, the tools, as 

introduced in this section, is not without drawback. First of all, most of these instruments 

can only provide measure specific parameters of certain body function, the evaluation of the 

scale still require human experience based interpretation. Secondly, the assessment tools 

generally require repetitive manual operation and are too obtrusive to be integrated into 

continuous monitoring system for long time tracking applications. In addition, complex 

measurement instruments such as the visual-based motion tracking system are costly and 

require professional installation and operation. In recent year, wearable sensors with low-

cost and unobtrusive design are increasingly involved in clinical assessment especially for 

automatic systems designed to collect data continuously for a relatively long period. More 

comparison and discussion about wearable sensing technology will be introduced in the next 

section of the chapter. 
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Figure 2-7. Pressure plate based gait analysis system 

(http://www.sensorprod.com/foot-plate-pressure-sensor.php) 

Figure 2-8. An illustration of gait analysis using visual based motion tracking 

system (Qualisys: http://www.qualisys.com/applications/biomechanics/gait-

analysis-and-rehabilitation/) 
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2.2 WEARABLE SENSOR IN REHABILITATION: AN ENGINEERING PERSPECTIVE 

Along with the recent rapid development of mobile computing and miniature devices, an 

increasing amounts of wearable sensor based products can be found in clinical applications 

[136]. The unobtrusive and relatively low cost nature of wearable devices has a substantial 

potential on transforming the conventional rehabilitation practice as it provides the capability  

for gathering quality and quantitative data from patients efficiently even in non-clinical 

settings like home or outdoor environment [137]. As demonstrated in Table 2-3, wearable 

sensors can be applied to collect a large range of signals from physiological to physical. 

Specifically designed body sensor networks can be integrated into clothing, accessories, and 

living environments to continuously collect various types of signals and parameters during 

patient’s daily activities [138]. As a result, the rehabilitation experts can follow patient’s 

performance and adherence during training programs more closely and conduct objective 

assessment on patient’s impairment level and recovery progress based on the data that are 

automatically collected using wearable sensors. An example is the wearable health care 

system based on knitted integrated sensors proposed in [139] as shown in Figure 2-9. The 

system is designed to continuously record physiological signals including respiration, ECG, 

physical activity, and temperature. By integrating sensors, electrodes, and connections in 

fabric form, the system is capable of performing long-term patient monitoring in a non-

invasive and unobtrusive way.  

The major current research challenges of wearable sensor technology fall into three key 

areas [137]. The first one is the development of various types of wearable sensor units. In 

general two main types of data are of interest in clinical rehabilitation applications namely 

the physical motion data such as linear and angular acceleration [140], and the physiological 

data such as Electrocardiography (ECG) and EMG [141]. Substantial amount of researches 

has been carried out to refine the sensor design to record these data with improved reliability 

while remaining unobtrusive. Secondly, the system integration and implementation of 

wearable sensor network is also an important topic. In order to fulfil the requirement of 

different clinical applications in various settings, the sensor combination, communication 

method and data infrastructure have to be thoroughly investigated to achieve optimal 

performance and efficiency. At last, after gathering patient data with wearable sensor 
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networks, another major challenge is on how to extract clinically meaningful information 

from the enormous amount of data. In this section, the state-of-art research outcomes from 

these areas will be reviewed.  

 

TABLE 2-3 THE TYPES OF WEARABLE SENSOR 

Type of signals Type of Sensors Description of measured data 

ECG Skin electrodes Electrical activity of the heart 

EMG Skin electrodes Electrical activity of the skeletal 

muscle 

EEG Scalp electrodes Electrical activity of the brain 

Blood pressure Cuff-based/ Photoplethysmogram 

(PPG) 

Pressure exerted by circulating 

blood upon blood vessel 

Body temperature  Skin patch/ temperature probe Temperature at the skin surface 

Respiration rate Piezoelectric/Piezoresistive 

sensor 

Chest expansion and contraction 

Oxygen saturation Pulse oximeter Oxygenation of the blood 

Heart rate Pulse oximeter/skin electrodes Frequency of the cardiac cycle  

Skin conductivity Galvanic skin response Electrical conductance of skin 

(indication of sweating) 

Phonocardiogram(PCG) Phonocardiograph Sound of the heart 

Blood Glucose Strip-base glucose meter Glucose in the blood 

Body Motion Accelerometer / IMU Kinematic data of human body 
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2.2.1 WEARABLE SENSORS  

In the field of rehabilitation medicine, wearable sensors are developed to collect a great range 

of physical or physiological signals including body movement, gait pattern, ECG, EMG, 

EEG Blood pressure and Respiration rate. Different design approaches have been taken to 

suit various applications such as mobility assessment, fall detection, location tracking, 

activity tracking, medical status and medication intake monitoring. The scope of this thesis 

is focused on the assessment of stroke induced motor function impairment. For this reason, 

this review will be limited to the sensors designed for motion sensing and mobility 

evaluation applications.  

One of the important types of wearable sensor is the motion sensor which is designed to 

collect real-time data that dynamically represent the human body movement and posture 

changes [142]. The current available human motion tracking solutions can be divided into 

two major categories: visual based and non-visual based systems. Visual based systems 

utilize optical sensor such as cameras and visual marker to record human movements, and 

they can usually provide highly accurate result. Therefore, they are extensively used in 

research labs to study human kinematics for sports and rehabilitation applications. For 

example, VICON is a commercially available visual based motion tracking system that 

Figure 2-9. A prototype wearable sensor garment designed by Paradiso et al. (R. Paradiso 

et al. 2005) 
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utilizes high resolution and high frame rate infrared camera array to provide 3D spatial 

displacement tracking. In [143], the VICON system was adopted together with ground 

reaction force and EMG measurement in a study that investigated the human gait dynamics 

involved in walking up and down a hill. In another research by McIntosh et al., a VICON 

system was utilized to prove the effectiveness of ankle-foot orthosis on hemiparetic gait 

[143]. In a recent study related to stroke rehabilitation, the 3d motion trajectories of stroke 

patients were sampled using a similar visual-based system Qualisys Oqus 300 to verify the 

effectiveness of a home training program involving sEMG biofeedback [144]. However, 

most of the studies involving visual-based system for rehabilitation applications are still in 

the preliminary stage or designed to be operated only in major hospitals and research centres. 

One of the largest obstacles which prevent visual-based systems to be widely implemented 

in practical clinical application especially in home and community settings is the vast cost 

and operation complexity. The multiple camera setups also require relatively large space 

without obstruction which is often unavailable in patient’s home and community training 

centres.  

On the other hand, the non-visual-based systems, especially inertia sensors based on 

microelectromechanical systems (MEMS), are attracting increasing interest in the field of 

physical medicine and rehabilitation due to their significantly lower cost and compact size 

[136, 137, 145]. Inertia sensors including accelerometers, gyroscopes and sometimes 

magnetometers are often combined as Inertia Measurement Units (IMU).  They can be 

attached to various parts of human body and form a wearable sensor network to 

simultaneously record kinematic data during rehabilitation training. The sampled data can 

be used to assess various properties of the training movement including motion type, 

frequency, intensity, duration and quality. IMU based sensing systems are often considered 

as a suitable candidate for providing TR services as they are relatively easy to setup and 

operate, and required no additional space. A number of researches have been carried out to 

investigate dedicated IMU based sensing systems to be used in non-clinical settings. Zhou 

et al. has proposed an upper-limb motion tracking system to support home-based 

rehabilitation. The design is capable of providing relatively accurate estimation of wrist, 

elbow and shoulder positions using only a pair of accelerometers [146]. In a preliminary 
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study conducted by Yang et al., the researchers explored the possibility of using simple 

inertia sensor network setup to assess hemiparetic gait pattern in terms of walking speed and 

temporal gait symmetry [147]. Strommen et al. performed an early mobilisation study with 

a similar setup using accelerometers to quantitatively measure and compare acute and 

transient ischemic stroke patient’s pattern of physical activity [148]. The low cost and non-

invasive setup can be expanded to non-clinical setting for long-term physical activity 

analysis.  

In addition to the kinematic input based systems, Surface Electromyography (sEMG) 

has also attracted growing interest in the field of rehabilitation engineering. sEMG records 

the electrical activities produced by skeletal muscle groups using electrodes attached to the 

skin surface. Surface EMG signal can provide rich information about muscle activation and 

function from neuro-electrophysiology perspective. It is commonly adopted in clinical 

settings when repetitive assessment of general muscle activation is needed due to the 

relatively simple and non-invasive procedure compared to intramuscular EMG [149, 150]. 

Due to the ability of reflecting critical neural activities such as the motor unit recruitment 

and synchronisation, surface EMG has already been proven effective for detecting 

neuromuscular abnormalities, fatigue and voluntary motion intention [151-153]. The 

implementation of sEMG analysis can also be found in post-stroke rehabilitation 

applications [154, 155]. After a stroke incident, the upper motor neuron lesion can lead to 

imbalanced excitatory and inhibitory input to alpha motor neurons and cause abnormal 

muscle excitability or spasticity which eventually results in significant limitation on patient’s 

motion [34]. Therefore, by investigating the abnormalities in sEMG signal, valuable 

information about stroke patient’s motor function impairment can be obtained.  In [155], 

high-density surface EMG with 89 channel recordings was used for classifying different 

training motions performed by stroke patients. A Hidden Markov Multivariate 

Autoregressive (HMM-mAR) network based approach for bisectional stroke impairment 

classification had been introduced in [154]. However, in order to replace the current human 

experience based motor function assessment, multi-level stroke impairment classification 

has to be investigated. 
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2.2.2 WEARABLE SENSOR BASED REHABILITATION SYSTEMS 

In order to utilize the benefit of advanced wearable sensor technology, computer-aided 

rehabilitation systems for various clinical applications are also being developed and 

experimented [142, 156]. A brief list of state-of-art rehabilitation systems and research 

projects that take advantage of wearable sensor technology is presented in Table 2-4. 

Although most of these systems are targeting different medical conditions, they can be 

subsumed under two main categories based on their functional application: supervision and 

assessment. Supervision includes monitoring patient’s daily activity, record training 

intensity, and identifying emergency events such as fall and seizure. Assessment includes 

evaluating patient’s body function impairment and tracking rehabilitation progress. The 

latest technological development for both applications will be reviewed in the following 

sections.  

2.2.2.1 Wearable Sensor for Patient Supervision 

One of the most common forms of supervision enhancements using wearable sensor based 

system is the automatic emergency event detection. This type of system continuously 

monitors patient’s physical or biological signal through wearable sensor network and 

searches for special patterns that may indicate an emergency event such as a fall or a seizure. 

Such system can improve supervision reliability and efficiency in hospital-based 

rehabilitation programs and is considered a necessity for ensuring the safety in home or 

community-based rehabilitation programs where professional human supervision may be 

lacking.   

Fall detection is an important safety feature that applies to a wide range of conditions 

from general eldercare to hemiplegia rehabilitation. Inertia measurement based systems are 

often adopted in such application to detect the kinematic features that indicates a possible 

falling motion, which is then used to trigger medical alert immediately. Although IMU-based 

motion sensing and data processing technology is relatively mature, techniques that improve 

the accuracy of distinguishing a fall from intentional ADLs are still being investigated [157, 

158]. In a study conducted by Kangas et al. [157], the accelerometer placement and 

classification algorithm for fall detection were investigated. Three tri-axial accelerometers 
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with a sampling rate of 400 Hz were attached to subject’s non-dominant wrist, waist, and 

forehand. Raw acceleration data were first processed with a 50 Hz down-sampling and 

median filter for noise reduction. Four different parameters were extracted for fall detection: 

a mixture of dynamic and static acceleration components on all axis were first summed 

together to obtain a ‘total sum vector’. The dynamic and vertical acceleration components 

were then separated from the sum before the maximum difference in acceleration within a 

0.6s sliding window was calculated to capture the fast changes. The parameter thresholds 

were adjusted in the experiment to minimise the chance of false alarms from ADLs. The 

experiment involves two voluntary subjects performing intentional fall and a series of ADLs. 

The result suggests that the waist and forehead measurements are most suitable for 

differentiating falls from ADLs where 100% sensitivity can be achieved. A different 

approach, which focuses on the transition of postures, was proposed in [158]. In Li et al.’s 

design, two IMUs attached to the subject’s chest and thigh were used to measure both linear 

and angular acceleration. Four different postures: standing, bending, sitting and lying were 

defined by setting the thresholds for IMU inclination angles. A three phase decision making 

process was then proposed to distinguish falls from ADLs. Firstly, a condition check was 

performed on the sum of acceleration to determine if the subject was at a static posture or 

during a dynamic transition. If a static posture was identified, the type of the posture was 

then recognized using the inclination thresholds. Finally, if a lying posture was recognized, 

the dynamic motion before the posture would be analysed to determine if it was unintentional 

and thereby a fall. Three volunteers were involved in the experiment by performing 

intentional falls and ADLs. The experiment result shows that the posture transition focused 

design is capable of correctly responding to some of the complex cases such as fast sit down 

and fall on stairs. However improvements are still needed as these systems are not able to 

perform in perplexing situations such as jumping into bed or falling against wall. 
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TABLE 2-4 A SUMMARY OF RECENT WEARABLE SENSOR APPLICATION IN REHABILITATION 

Research 

group 

Type of Condition Description of wearable sensor configuration 

Kangas et al. 

[157] 

Fall Detection Triaxial accelerometric measurement at waist, wrist 

and head to distinguish fall from ADL 

Li et al. [158] Fall Detection Two IMUs to monitor subjects posture and to detect 

falls using a combination of IF-THEN rules 

Nijsen et al. 

[159-161] 

Epilepsy Accelerometer/ extracted feature for myoclonic 

epileptic seizure detection 

Pitta et al. 

[162] 

Chronic obstructive 

pulmonary disease 

(COPD) 

Accelerometer armband to measure COPD patient’s 

physical activity and find its correlation with 

pulmonary function impairment 

Patel et al. 

[163] 

COPD Wireless wearable sensor network to monitor COPD 

patient’s activity  

Manson et al. 

[164] 

Parkinson’s disease 

(PD) 

Single accelerometer on shoulder to monitor the 

dyskinesia severity of PD patient 

Thielgen et al. 

[165] 

PD Accelerometer output to quantify tremor severity 

scores 

Huang et al. 

[166] 

Stroke Multiple inertia sensor for reconstructing 3D upper 

limb movement and evaluating impairment 

Uswatte et al.  

[167] 

Stroke Accelerometer to provide objective information 

about upper limb activity for patient with sub-acute 

stroke 

Prajapati et al. 

[168] 

Stroke Accelerometer sensor network to monitor the 

quantity and quality of stroke patient’s gait pattern 

Del Din et al. 

[169] 

Stroke Inertia-based wearable sensors to collect kinematic 

data from stroke patients during WMFT tasks and 

automatically evaluate FMA scores 

Carpinella et 

al. [170] 

Multiple Sclerosis 

(MS) 

A single wrist-mounted IMU to evaluate MS patients 

upper limb function based on ARAT rating 
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Another significant application of wearable sensor in patient supervision is the detection 

of epilepsy seizures. Identifying seizure accurately in a timely manner is important for 

patient care and antiepileptic drug delivery management [159]. Conventionally, the most 

reliable seizure detection approach is performed by combining a direct visual inspection and 

a manual electroencephalogram signal screening (EEG), which can be excessively labour 

intensive, especially during night time. The EEG system also restricts the possibility of 

performing seizure detection in home-based environments. In order to provide additional 

patient supervisions when human resource is limited, audio-triggered automatic alarm 

systems are currently widely implemented despite their poor sensitivity and Positive 

Predictive Value (PPV) [171]. A novel approach which utilizes wearable accelerometers to 

detect motor features that may indicate epilepsy seizure was introduced in [159]. In the 

proposed design, wearable sensor nodes were constructed with two Analog Devices 

ADXL202E 2D accelerometer that were mounted at perpendicular angle to enable a 3D 

measurement. The motion data were collected from all four limbs as well as from chest, 

together with ECG, EEG, and video recording for a comparison purpose. A 36 hours clinical 

trial was performed with 18 patients who suffer from severe epilepsy. The result has 

demonstrated that the accelerometer setup can detect 48% of the total seizures and 100% for 

10 out of the 18 patients. In two of the follow-up researches [160, 161], 80% detection 

sensitivity was achieved with accelerometer-based system. However, the PPV remains low 

which indicates a large number of false alarm. Based on evidence, it is clear that 

accelerometer data can be used as a complementary input in addition to the EEG approach, 

but  as an independent measure, more development is still required especially for reducing 

the false-positive rate.   

Wearable sensor systems that measure kinematic information are also used for 

monitoring the activity level of patients with Chronic Obstructive Pulmonary Disease 

(COPD) and estimate their daily energy expenditure. Physical inactivity is commonly 

observed from COPD victims after the acute exacerbations, and it can result in a number of 

comorbidities such as muscle atrophy and decrement in quality of life [172]. Increasing 

physical activity is considered one of the objectives for COPD treatment and developing 

accurate energy expenditure tracking systems is important for measuring the outcome of 
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pulmonary rehabilitation programs and improve clinical intervention [173, 174].  The 

conventional activity measurement methods include direct observation, self-reporting, 

radioisotope water techniques and gaseous composition measurement and they are either 

time-consuming, unreliable or require complex setup to implement [173]. In one of the 

pioneer studies [175], an experiment conducted by Wong et al. demonstrated how an 

accelerometer can be used for physical activity level measurement. The result has shown 

that a wearable sensor based measurement is linearly correlated to the conventional oxygen 

consumption based measurement. Along with the recent development of miniature IMUs, 

an increasing number of motion sensing wearable sensor based systems has been developed 

for this application [162, 172, 176-178]. In [173], the validity of activity measurement using 

accelerometer was further proven by evaluating its correlation with testing subjects’ exercise 

capacity, pulmonary impairment level, self-report on dyspnea and self-efficacy. 47 subjects 

were involved in a 3-day experiment with a single accelerometer attached to the non-

dominant side of the waist. The result has shown a high correlation between measures in 

general. The test-retest reliability of the setup was also tested with a repeated 6-minute walk 

where a high intraclass correlation coefficient was scored. In a series of researches conducted 

by Pitta [162, 172, 178], the relationship between physical activities, pulmonary function 

impairment and hospitality after exacerbation was studied with the aid of wearable 

accelerometers. In [162], an accelerometer integrated armband was used to monitor the 

physical activity of 40 COPD patients over 2 days. The result has shown that patient’s 

maximal voluntary ventilation is better correlated with patient’s activity level than forced 

expiratory volume and inspiratory capacity. In a more recent study conducted by Patel et al. 

[163], a different activity monitoring approach was proposed. A wearable sensor network 

that consists of 10 wireless IMU nodes was used to collect the motion data from different 

parts of the body and classification tests were performed to identify ADLs. Experiments 

have been conducted with 15 COPD patients performing a selection of 11 different ADLs 

and exercises. Six different classifiers including nearest neighbour, Naïve Bayes, J48 

decision tree, Random Forest and Support Vector Machine (SVM) were implemented and 

compared in both a 10-fold and Leave-One-Out cross-validation tests. The results have 
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shown that the best error rate was achieved by SVM where 88% of the ADLs can be correctly 

identified. 

2.2.2.2 Wearable Sensor for Clinical Assessment 

Automatic clinical assessment is another important application of wearable sensor system in 

rehabilitation settings. Clinical assessment may include the quantification of certain body 

function such as limb mobility or objectively examine the severity of certain conditions such 

as motor fluctuation in Parkinson Disease (PD). By adopting wearable sensor technology, 

an automatic system can be built to facilitate the clinical assessment process of a wide range 

of conditions, from PD to stroke, by improving its reliability and efficiency, as well as 

providing quantitative feedback to support both patient’s rehabilitation training and doctor’s 

decision making. In contrast to patient supervision applications, where threshold finding and 

template matching techniques are dominant, in clinical assessment applications, advanced 

classification algorithms are often required to relate feature parameters to clinically 

meaningful measures such as Brunnstrom Stages of Recovery for stroke or Unified 

Parkinson’s Disease Rating Scale (UPDRS) for PD.  It is also considered as a more 

challenging problem as the evaluation of certain conditions involves a large number of 

factors and the conventional assessment tools are usually designed to suit experience based 

human decision making which may not be easy to fully comply with using automatic systems.  

One of the most widely investigated clinical assessment system is gait analysis [179]. 

Gait analysis involves a quantification of various dynamic features and an identification of 

pathological gait patterns that may be related to certain conditions. Gait analysis is 

extensively used in stroke rehabilitation as hemiplegic gait patterns have unique features that 

can be related to the recovery progress, and stroke patients’ walking ability can greatly affect 

their life quality. In a research conducted by Prajapati et al. [180], wearable accelerometers 

were placed above stroke patient’s ankle for eight continuous hours to  study the 

characteristic of patient’s daily walking pattern. Correlation analysis was then conducted for 

motor impairment measured in Chedoke McMaster Stroke Assessment (CMSA) scale to gait 

parameters including bout duration and walking speed.  The result revealed that a statistically 

significant increase of gait asymmetry can be observed between daily walking and laboratory 
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assessment. In a follow-up study [168], similar setup was adopted with additional heart rate 

monitor to prove that cardiorespiratory workload is unlikely to limit walking participation 

and the patients were intentionally walking at speed below the level which may provide 

health benefits. In a research carried out by Luinge et al. [181], a Kalman filter based sensor 

fusion method was used to reduce the integration drift and to ultimately improve the 

accuracy of IMU based human kinematic measurement. In [182], the relationship between 

cognition impairment and gait variability and stability in geriatric patients was investigated 

using single accelerometer data and extracted features such as walking speed, trunk 

acceleration, stride variability and regularity. However, these methods produced indirect 

outcomes that can only be referenced by professionals, implying that the conclusive 

evaluation still depends on subjective judgments. In order to obtain a self-generated 

benchmark that is used as feedback to benefit the rehabilitation process, more objective and 

intuitive scoring system are required.  

IMU-based wearable sensors are also frequently used for evaluating motor fluctuation 

and levodopa-induced dyskinesia in PD. In [164], shoulder mounted accelerometer was used 

to perform dyskinesia assessment for PD patients. The accelerometer output were compared 

with established clinical dyskinesia scales including modified Abnormal Involuntary 

Movement and Goetz scales, and strong correlation was observed for both scales. In another 

study conducted by Thielgen et al. [165], an IMU-based system, which is capable of 

automatic tremor severity assessment, was proposed. The 4-channel accelerometer based 

approach was tested with 30 patients with PD, and the system was capable of detecting 

evident changes in tremor severity after specific treatment. In [183], a wearable sensor based 

home monitoring system for patients with PD was proposed. An IMU-based wireless body 

sensor network was adopted to collect patient’s motion data during the performance of motor 

tasks defined in UPDRS and the system was capable of capturing the severity of tremor, 

bradykinesia and dyskinesia based on the sensor reading, and estimating UPDRS scores 

using a Support Vector Regression based method.  

Upper limb motor mobility evaluation is considered more difficult compared to gait 

analysis due to higher variability and complexity [184]. By applying biomechanical models 
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such as Fitts’ Law, it is possible to calculate a ‘performance index’ for each motion based 

on the angular speed, accuracy and amplitude measured by optical sensors [185-187]. 

However, when dealing with stroke patients’ motion evaluation, the problem becomes even 

more complex for several reasons. Firstly, stroke patients’ motion cannot be fairly evaluated 

solely based on basic physical parameters such as amplitude and speed. Patients’ age, fitness 

level, and other health conditions may limit the limb flexibility and strength and thus greatly 

affect those physical parameters. Moreover, due to cognitive problem, many stroke patients 

are not able to follow the guidance precisely, therefore, the evaluation cannot be done by 

simply matching the motion trajectory. In order to address these difficulties, a more 

sophisticated and robust classification system is required. 

In recent years, a few studies have been carried out on implementing motion evaluation 

techniques for stroke rehabilitation applications. One example is a sensorized garments used 

in self-administered post-stroke physical rehabilitation system introduced by Giorgino [188]. 

The system was constructed with strain sensors to measure patients’ upper extremity motion 

during rehabilitation training sessions. A template matching classifier based on Dynamic 

Time Warping (DTW) algorithm was adopted to identify the type of the motion and to 

produce real-time feedback according to the similarity between the sample and template. 

The classifier is effective for the purpose of motion pattern recognition due to its nature of 

eliminating influence introduced by distortion or phase shift when comparing two sequences. 

However, the system itself is not designed for differentiating different stages of stroke 

impairment. In order to produce comparable classification results that match doctors’ 

evaluation, the system design, including both sampling procedure and classifier training 

method, has to be sensitive to the features that are pertinent to the post-stroke recovery 

process e.g. synergy pattern development and symptoms of muscle spasticity.  

A micro-sensor based upper limb rehabilitation system which can perform motor 

impairment evaluation was introduced in [166]. A range of inertial measurement sensors, 

including tri-axial accelerometers, gyroscopes and magnetometers, were utilized in this 

system as motion capture units. The kinetic data, sampled by the motion capture units, 

enabled the reconstruction of the 3-dimensional movement performed by patients and the 
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evaluation process was based on Active Range of Motion (AROM) and Motor Feature 

Indices (MFI) extracted from the reconstructed motion data. This type of the systems can 

usually provide intuitive feedback and it can also allow physicians to observe patient’s 

training activity remotely in real time. However, the use of multiple types of inertial sensor 

will greatly increase the cost and computation complexity. The feature selection technique 

used was based on the observation of the statistical difference between the data sampled 

from stroke patients and healthy individuals. The design was also unsuitable for body 

function impairment classification as some features that can be used to identify stroke 

patients may be misleading when used to evaluate stroke recovery progress. For example, 

significant statistical difference often appears in features like motion speed when comparing 

healthy participant with stroke patients. However, it is not always true that the faster 

moments indicate better recovery as it may also be the sign of high spasticity and a lack of 

muscle control.  

In a research conducted by Uswatte et al. [167], the reliability and validity of a wearable 

accelerometer based system as a rehabilitation outcome evaluation method were investigated. 

A system consisted of four accelerometers was attached to stroke patient’s limbs and chest 

for long-term measurement of patient’s daily activity. The objective of the experiment was 

to evaluate the effectiveness of constraint-induced movement therapy (CIMT) in post-stroke 

rehabilitation and the data sampling was conducted in a 3-day period before and after CIMT. 

The accelerometer output were summed over an epoch of 2 seconds as a feature to reflect 

the amount of activity performed by the patient. The patients’ activity is also rated using 

Motor Activity Log (MAL), an interview based assessment. The experiment result showed 

that the data collected by the accelerometer based system supported the hypothesis that 

CIMT can improves the stroke patient’s body function and activity level. The test-retest 

reliability of the system was adequate and a significant correlation between the measurement 

and MAL was observed, which suggests that the accelerometer based method is a valid tool 

for evaluating rehabilitation outcome. 

A computerized motor-skill analyser for visuo-motor skilled motion evaluation was 

introduced in [189]. The user of the system was required to move a traced object/marker on 
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a two-dimensional plan and followed a figure-of-eight pattern shown on a display. The lap 

time and the accumulated trajectory error were recorded as references for evaluation. The 

experiment outcome demonstrated that the trajectory error had a negative correlation with 

Brunnstrom stage. However, the motion tracking scheme was not sensitive enough to detect 

the presence of spasticity and the synergic patterns and thus the system was not capable of 

differentiating stroke patients at different Brunnstrom stages. 

  In a study conducted by Del Din et al. [190], IMU-based wearable sensors were utilized 

to collect acceleration data from stroke patients during a Wolf Motor Function Test (WMFT) 

and the features extracted from the data  were used for FMA estimation. Motion data were 

sampled from twenty-four stroke survivors, and eight WMFT motor tasks were performed 

by each participant. A random forest was used for pattern recognition, and the result has 

demonstrated that the proposed system can estimate FMA score based on motion recorded 

from the WMFT tests with low RMS error. However, the system was developed around 

WMFT which is a functional test designed specifically for impairment evaluation and 

requires extensive professional supervision. As a result, the automatic assessment feature 

cannot be integrated into the routine rehabilitation training and the implementation of the 

system in an unsupervised environment will be relatively difficult.  

Similar quantitative assessment approach can also be expanded to other upper extremity 

motor function impairment. In [170], IMU was used to assess upper limb motor function in 

patients with multiple sclerosis. A functional task-based clinical assessment tool named 

Action Research Arm Test (ARAT) was used to evaluate patients’ ability to handle objects 

and the objective was to develop an automatic assessment method which can overcome the 

drawbacks of the conventional assessment including subjectivity and low sensitive to mild 

impairment. The experiment was conducted with 12 healthy participants and 21 patients, 

and the motion data was sampled using a single wrist-mounted IMU. Basic features such as 

movement duration and a jerk index which measures motion smoothness were adopted, and 

correlation between feature value and clinical scores were investigated. The result shows 

that the features are strongly correlated to ARAT rating and Nine-Hole Peg test score, and 

the motor performance measured in jerk and duration for patients with different level of 
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impairment are significantly different. However, only statistical analysis was conducted in 

this study and specifically tuned classifier may be needed to replace manual classification 

process of the clinical scales.   
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2.2.3 PATTERN RECOGNITION IN REHABILITATION 

In addition to the sensor design and the data acquisition techniques, another significant 

challenge in implementing wearable sensor network in rehabilitation systems is how to 

process the enormous amount of data that are collected during continuous patient monitoring 

and to extract the patterns which can provide valuable and accurate information to assist 

rehabilitation professional’s decision-making. Most of the automatic features provided in 

wearable sensor based rehabilitation systems such as training motion identification and 

objective mobility assessment also require advanced machine learning and data mining 

techniques.  

Pattern recognition is considered as an efficient machine learning method for strafing 

data with various size and types by assigning labels to each data instance with or without 

supervision. The classification process may be performed by measuring similarities on the 

basis of a chosen number of extracted features that represents the original data. The 

application of pattern recognition extends across in a wide spectrum of science and 

engineering topics. In the field of medicine and biomedical engineering, pattern recognition 

plays a prominent role in bioinformatics, computer-aided medical diagnosis and cognitive 

science [191]. The performance of most of the pattern recognition techniques varies 

significantly between applications. Depending on the type and structure of the data, the noise 

level, the output expectation and the environmental factors, the researcher often has to 

investigate a list of algorithms before finally choosing one with the highest performance for 

a particular application. It is often necessary to fine tune the algorithm using model 

validation techniques such as cross-validation in order to achieve the optimal performance. 

Ensemble methods or highly customized systems may also be developed to suit certain 

requirements of the application. In this section, some of the state-of-the-art rehabilitation 

medicine related implementation of pattern recognition techniques will be reviewed.  

2.2.3.1 Linear Regression Models 

One of the simplest forms of pattern recognition is the use of linear regression models where 

its output is a sum of weighted attribute values. Linear models are often applied to binary 

classification problems such as separating paretic samples from healthy samples. However, 
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they cannot adapt to the different shapes of clusters, hence, often perform poorly when there 

is a complex separating surface between clusters. As a result, regression methods are often 

used alongside statistical analysis in trials to identify a potential pattern rather than building 

classifiers to assist decision-making in clinical applications. For example, in a study 

conducted by Sprigle et al., linear regression were adopted for analysing the relationship 

between the pelvic tilt data of patient sitting in a wheelchair measured using two different 

systems [192]. In [193], Moy et al. conducted a study to evaluate the performance of a 

wearable activity tracking system for COPD patient which is based on counting walking 

steps using uniaxial accelerometer. A linear progression model was used to identify 

predictors for the percentage of correctly captured step counts in various settings. Similar 

technique was also adopted in Zollo et al.’s series of studies involving robot-assisted chronic 

stroke rehabilitation [194, 195]. A linear regression analysis was utilized for deriving 

quantitative indicators from kinematic data collected from InMotion2 robotic therapy system 

and a handheld accelerometer to represent biomechanical motor performance and investigate 

their correlation with conventional clinical scale namely FMA. 

2.2.3.2 Decision Trees 

A more common approach adopted in solving classification problems is Decision Tree, 

which is a “divide and conquer” type rule-based classifier that grows tree shape structured 

patterns by learning training instances [196]. Each node in the tree is associated with a 

condition that is tested against a particular attribute of the inputs and the input instances will 

travel through a certain path decided by the testing results from the root to the leaf node 

where it will receive a label as classification output. Decision trees are relatively easy to tune 

and are capable of solving classification problems with nonlinear separating surface. 

However, larger decision trees are prone to overfitting and they require additional pruning 

process to remove the branches that provides fewer classification advantages or is generated 

from noise or incorrect data. An ensemble of trees are often grown together through a 

bagging process where multiple subsets are created by randomly select samples from the 

original training dataset, and the final classification output is decided based on a majority 

vote. The ensemble approach, or “random forester”, produces classification models with 
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reduced variance and improves classification accuracy, therefore it is often preferred in 

practical applications [197].  

Decision tree method was extensively used in the series of researches conducted by Patel 

et al., regarding wearable sensor based post-stroke rehabilitation monitoring [190, 198]. In 

[198], decision trees were adopted to estimate FAS using patient’s motion data sampled with 

accelerometers during the performance of selected Wolf Motor Function Test tasks. Twenty 

features extracted from the sensor data were selected using ReliefF algorithm and Davies-

Bouldin cluster validity index to remove features that contribute less for separating classes. 

A bagging with replacement process was performed to generate multiple subsets of samples 

for growing random forest, and the splitting of the nodes on each tree was based on a subset 

of features. The accuracy of the model was further improved with a percentage error 

reduction based pruning process. A similar approach was adopted in [190] where random 

forests are constructed to estimate FMA using the same motion dataset, but only with single 

Wolf Motor Function Test item. 

2.2.3.3 Instance-Based Learning 

Instance-based learning algorithm such as K-nearest neighbour (KNN) is  another common 

type of techniques that are used to address the motion classification problem [199-204]. 

Unlike many other pattern recognition techniques, instance-based method retains the 

original input instances for classification without a learning process to generalized data into 

a set of inference rules. This type of the learning strategy is generally referred as lazy 

learning, as most of the work is delayed until the evaluation stage when the query is made. 

As a result, the classification process can become too cumbersome and impractical for many 

applications. When instance-based methods are implemented with template matching 

algorithms for multinomial motion classification, the classifier performance could be further 

damaged as the heavy querying process may be repeated multiple times to locate the optimal 

match. In order to be integrated into regular rehabilitation training, the classification process 

must be computationally inexpensive to perform even with a large number of motion types. 

Therefore, despite the classification performance, instance-based learning is not considered 

as the most suitable candidate for many practical applications. 
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In a research investigating fatigue level during ADL using sEMG [204], a KNN 

classifier was trained to grade the sEMG samples collected from extensor carpi redialis 

muscle during repeating palm flexion-extension movements into four different physiological 

states based on the level of fatigue. The classification was obtained by placing the input 

sample into the training data space and performing a majority vote using the class labels of 

the four nearest samples. KNN algorithm is also tested in a four-class brain computer 

interface problem by Schlogl et al. [203]. The objective was to classify EEG data recorded 

with 60 electrodes from 5 subjects into 4 groups of different motor-imagery tasks. KNN with 

various number of k values was compared with other methods that include Linear 

Discriminant Analysis (LDA) and Support Vector Machine (SVM). However, its accuracy 

appeared to be significantly inferior to the other two despite the relatively fast processing 

time. 

2.2.3.4 Support Vector Machine (SVM) 

SVM is a powerful pattern recognition tool with high generalization ability that is designed 

for complex binary classification problems as originally proposed in [205, 206]. SVM 

separates samples from different classes by constructing a linear discriminant function based 

on the critical boundary samples called ‘support vectors’ and maximizes the gap of 

separation between them. However, contrary to regular linear models, SVM is capable of 

solving linearly non-separable data by incorporating kernel function to create nonlinear 

separating surface from high-dimensional space. Multiple binary SVM can also be combined 

to extend its capability for solving multiclass classification problems[207]. An illustration 

of SVM is presented in Figure 2-10. As depicted in both figures, 2D space is formed by 

feature x1 and x2. In Figure 2-10a, the two classes are linearly separable and a separating 

surface can be found using equation w ∙ x − b = 0 where x represents the sample vector, w 

is the normal vector to the surface and b determines how far the surface offsets from the 

origin along w. The support vectors on the boundary are highlighted. In Figure 2-10b, a 

Gaussian kernel is implemented to construct a high-dimensional separating surface and a 

soft margin is used as errors within the margin are allowed. An additional soft margin 

coefficient C, which governs the penalty associated with the misclassification rate, is 
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introduced as a tuning parameter and a trade-off between margin sizes and he error penalty 

must be considered to improve the optimization process of the SVM.  

In the field of biomedical engineering, SVM is a common candidate for biosignal pattern 

recognition applications such as body motion identification or EEG/EMG-based event 

recognition [208-211]. However, the performance of SVM is highly dependent on the choice 

of the kernel function and the tuning of penalty and kernel parameters. The computation 

complexity, which increases rapidly as the size of the dataset grows, can also be a limiting 

factor that hinders its performance. 

In a study of EEG analysis for seizure prediction conducted by Subasi et al. [209], an 

SVM with Radial Basis Function (RBF) kernel was implemented to detect epileptic seizure. 

Discrete Wavelet Transform (DWT) was used to decompose the original EEG signal and 

extract its features. Principal Component Analysis (PCA), Independent Component Analysis 

(ICA), and Linear Discriminant Analysis (LDA) were then applied to reduce and to optimize 

the feature set. The SVM parameters were tuned within a 10-fold cross-validation process. 

The final testing result showed that a combination of LDA and SVM produced the best 

classification result. In another study investigating the feasibility of using wearable 

accelerometer data to estimate the severity of Parkinson Disease [210], SVM with three 

different kernel functions: polynomial, exponential, and RBF, were tested and compared. 

Based on the testing results, polynomial kernel is considered the most suitable for the 

application as it can help to achieve higher accuracy in general and take less influence from 

low penalty parameter value. In Schlogl’s brain-computer interface study[203], SVM 

demonstrated superior accuracy compared to KNN and LDA in a Leave-One-Out cross-

validation test. However, it also required the longest processing time.  
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a) 

b) 

Figure 2-10. A demonstration of SVM: a) SVM with a clear linear separation surface. b) 

SVM with soft margin when perfect separation is not applicable. 

(http://en.wikipedia.org/wiki/Support_vector_machine, date accessed: 9 Jan 2015) 
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2.2.3.5 Fuzzy Approaches 

Fuzzy approaches refer to the classification methods that utilize fuzzy logic or Fuzzy 

Inference System (FIS). Same as the other inference engines, FIS can perform input-output 

mapping based on a knowledge base. As the name suggests, FIS allows fuzzy reasoning and 

defines a variable with a degree of membership which is usually a range between 0 and 1. In 

pattern recognition, this characteristic allows FIS-based algorithms to take uncertainties into 

account and create a more precise configuration of label assignment.  On the other hand, the 

conventional crisp algorithms are unable to tolerate the overlapping of the classes because 

the model permits only a binary decision which assigns each input pattern a single class. 

Compared to the conventional inference systems, FIS is more similar to human logic where 

it describes the value of attributes as a degree of likelihood. This characteristic gives FIS an 

advantage in dealing with vagueness and uncertainties which are often encountered in fields 

such as disease diagnosis, and thereby it is widely implemented in medical applications [212]. 

The input and output of FIS are linked by a set of conditional statements called fuzzy rules, 

which usually require the aid of automatic algorithms for modeling complex systems. 

Adaptive Neuro-Fuzzy Inference System (ANFIS) is an integration of Artificial Neural 

Network (ANN) and FIS, and it is a widely adopted approach relative to the fuzzy rule tuning. 

ANFIS based classifiers are specialized in dealing with highly nonlinear systems [213]. A 

good example is [214] where an ANFIS classifier with five layer back-propagation ANN 

and generalized bell-shaped membership function was implemented to detect a heart valve 

disorder based on recorded Doppler heart sounds. Wavelet transform and short-time Fourier 

Transform were used for feature extraction and LDA was used for feature reduction. The 

result has shown that the ANFIS based approach can achieve higher sensitivity and 

specificity compared to SVM based approach and greater specificity than Fuzzy C-Mean 

based approach. In another study that involves vigilance level estimation using EEG 

recording [215], Gaussian curve membership function based ANFIS classifiers were 

employed in a similar setting where the features were extracted using DWT decomposition 

and Shannon entropy was used to rank and select features. The classification accuracy has 

also been found to be higher than ANN model based methods.  
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Chapter 3  

AUTOMATIC IMPAIRMENT LEVEL 

CLASSIFICATION 

 

Impairment level classification is an important process in a post-stroke rehabilitation and it 

has to be repetitively performed throughout the program to track the patient’s recovery 

progress and to adjust the training scheme accordingly. Conventionally, chart-based manual 

assessments are commonly adopted in practice. The efficiency and reliability of these 

procedures were limited due to the lack of unified classification standard and automatic 

assessment tool. In this chapter, a novel approach for impairment level classification based 

on Brunnstrom stages of recovery is presented. Brunnstrom stage classification is one of the 

most common measures of stroke patients’ rehabilitation progress and usually it can only be 

performed by experienced clinicians. The proposed method employs a hybrid algorithm 

based on Principal Component Analysis (PCA) and fuzzy inference system as depicted in 

Figure 3-1. Kinematic data is collected using a low-cost IMU based Body Area Network 

(BAN) system and a set of features reflecting the subjects’ motion characteristic are 

extracted from the filtered sensor output. PCA is applied to reduce the dimensionality of the 

feature space and to derive the principal components that are closely related to patients’ 

motion quality and motor functional limitation. A Fuzzy Inference System (FIS) is then 

constructed based on the extracted information before getting tuned and trained using ANFIS 

for automatic Brunnstrom stage classification. Experiments have been conducted using 

motion sampled from 21 stroke patients and three healthy participants. The result of cross-

validation test has demonstrated that the system is capable of classifying Brunnstrom stage 

of recovery with 87.5% of accuracy when verified against rehabilitation expert’s decision. 
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Figure 3-1 The system diagram of the proposed Brunnstrom Stage classifier 
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3.1 METHODOLOGY  

3.1.1 IMU BAN  

A low-cost non-visual based motion tracking BAN had been developed for sampling motion 

data from subjects. The wireless sensor node used in the experiments consists of a 3-axis 

accelerometer (Analog Devices ADXL335), which captures acceleration information up to 

30m/s2, and a low power Zig-Bee based communication module, powered by a 3.7V, 

1000mAh Polymer Lithium Ion battery. There are no secondary sensors, such as a gyroscope 

used in the system for the size and cost reduction of each sensor node. The sensor samples 

the motion at 20Hz and outputs a signal mixture of dynamic acceleration caused by linear 

motion and vibration, and static acceleration caused by angular motion respect to the 

direction of gravity. In the experiment, two sensor nodes were required to be attached to the 

subjects’ arm, on the wrist, and in the middle of the biceps brachii muscle belly as shown in 

Figure 3-2, in order to track the isolated joint motion which is crucial for Brunnstrom stage 

classification. 

 

Figure 3-2 The mounting positions of the inertia sensors 
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3.1.2 PRINCIPAL COMPONENT ANALYSIS 

PCA is a simple and powerful statistical tool and it is well-known for its ability to reduce 

the spatial redundancy from a set of data by applying orthogonal linear transformation and 

extracting principal components with maximized variance from a large group of variables. 

By performing a feature extraction, the implementation of PCA can significantly increase a 

classifier’s performance as proven in [216] and it has been adopted in various engineering 

problems for signal decomposition and dimension reduction [209, 217, 218]. The process of 

PCA starts with obtaining covariance matrix of the input feature matrix. An orthogonal 

transformation of the input matrix need to be carried out with optimized eigenvectors which 

ensure the new components produced will meet following properties [219]: 

 

1. The new components are uncorrelated. 

2. The new components will have sequentially maximum possible variances. 

3. The mean-squared error in the representation of the original inputs by the principal 

components is minimal. 

 

The principal components are sorted in descending order of the eigenvalues to represent 

the importance of each component. In the proposed system, PCA is utilized to extract 

principal eigenvectors that represent the trend of stroke rehabilitation process which can 

produce input for the fuzzy inference system by projecting motion data onto the principal 

component coordinate. During the experiment, a total number of 27 different features have 

been extracted in order to cover as much information from the data as possible and direct 

observation of these variables for trends and connections is complicated and sometimes 

confusing. However, by studying the actual patients’ upper-limb motion, we know that some 

unique patterns are presented at different Brunnstrom stages. For example, at stage III, the 

patients have just regained the ability to move their limb voluntarily, and the motions are 

usually weak with significantly limited range. The high muscle spasticity also stops them 
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from relaxing the muscle and completing the movement. At higher recovery stages like stage 

IV, the patient’s muscle strength and endurance have significantly increased in most of the 

cases and a better muscle control allows them to complete the exercise at much higher 

standards with some consistency although the synergy pattern is still observable up to stage 

VI. In order to unveil these inherent patterns from observed attributes and provide a clearer 

image of how these patterns can be related to stroke recovery progress in terms of 

Brunnstrom stages, PCA is adopted as a matching solution in our application. 

3.1.3 FUZZY INFERENCE SYSTEM 

Same as the other inference engines, fuzzy inference system can perform input-output 

mapping based on a knowledge base. Compared to conventional inference systems, FIS is 

more similar to human logic, in which it describes values of attributes as a degree of 

likelihood. This nature gives FIS an advantage in dealing with vagueness and uncertainties 

which are often encountered in fields such as disease diagnosis. That is the reason why it is 

widely implemented in medical applications [212]. Since the proposed system is aiming at 

replacing human diagnosis of Brunnstrom stage, FIS is considered as a proper tool for 

decision-making. 

As demonstrated in Figure 3-1, in a fuzzy inference system, the inputs are first 

transformed into degrees of membership in a process called fuzzification, which is done by 

projecting the input numerical values into a set of membership functions (MF) with 

predefined fuzzy sets. The degree of membership obtained is a fuzzy representation of the 

extent that the linguistic value has reached and it is used as a premise for decision-making 

based on fuzzy rules. Fuzzy if-then rules are conditional expressions that link premise and 

consequent fuzzy sets. Depending on the type of fuzzy if-then rules employed, fuzzy 

inference systems can be classified into different types [220]. The one used in the proposed 

system is called Takagi-Sugeno fuzzy inference or simply type-3 fuzzy inference system 

[221]. Different from type-1 and type-2 systems, where it utilizes projected value on an 

output MF as the fuzzy rule evaluation output, type-3 systems use a linear combination of 

input variables with an additional constant term as the output and the overall system output 
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is a weighted average of the output from each rule. The operation of a zero-order type-3 

system is demonstrated as follows: 

If the system has two inputs x1 and x2, the output zi for each fuzzy rules is evaluated as: 

 ii cbxaxz  21                                                     (1) 

However, for a zero-order system, the first order terms can be omitted and the function will 

only yield the constant ci for the ith rule: ii cz  . Each output is also weighted by a firing 

strength wi . For an AND rule, wi can be calculated as: 

))(),(( 2211 xAxAFuzzyANDwi                                  (2) 

where A1, A2 are the input MFs, and the final output y can then be obtained as: 
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where N is the number of the fuzzy rules.  

The fuzzy inference system structure of the proposed system is shown in Figure 3-3. 

The two inputs are the 1st and 2nd principal components extracted during PCA. Each input is 

associated with three different MFs which define different range of the input value. Nine 

fuzzy if-then rules and nine corresponding output MFs, which are constants related to 

Brunnstrom stages in this case, construct the framework that is required for the decision-

making process. The output of this structure will be a numerical value that represents the 

patients’ recovery progress on the scale of Brunnstrom approach. However, in order to 

evaluate the classification system performance, the classification output are rounded to the 

nearest integer during the experiment e.g. for all output value 4.5≤y<5.5, the subject will be 

classified as Brunnstrom stage V. 
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Figure 3-3. Fuzzy inference system structure for proposed classification system 
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3.1.4 ANFIS 

In this study, ANFIS method was adopted to model the system and to train the fuzzy 

inference system. Since it was first introduced in [222], ANFIS has been widely 

implemented as an effective tuning tool for fuzzy inference systems in many areas [212, 

223]. As an adaptive network architecture, it provides an automatic solution for transforming 

human knowledge or experiences into fuzzy rules and subsequently tuning the MFs within 

the fuzzy inference system for minimum output error and maximum performance [27]. 

ANFIS adopts a hybrid learning algorithm which combines least squares estimation and 

backpropagation for parameters tuning. Such hybrid algorithm has been proven to be highly 

efficient with superior speed and accuracy compared to many Artificial Neural Network 

based methods [27]. The basic structure of a type-3 ANFIS is shown in Figure 3-4. As can 

be seen, after fuzzification process, fire strength and its normalized form are generated 

through the two layers of nodes in the middle of the structure. The overall output is produced 

in the same way as described in equation (2) and (3). 
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Figure 3-4. The basic structure of Type-3 ANFIS 
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3.1.5 EXPERIMENT PROTOCOL 

The experiments in this research were conducted in collaboration with the Rehabilitation 

Medical Centre of the 2nd Hospital of Jiaxing in China. The subjects involved in the 

experiment included both the stroke patients and the healthy participants from the hospital 

and over 200 motion data recordings were collected from 21 selected patients and three 

healthy participants.  

The patient subjects were chosen from the patients with a Brunnstrom stage ranging 

from III to V. The patients from stage I and II are excluded from the experiment because the 

patient’s condition could still be unstable during the early recovery stages and they usually 

have difficulties performing any voluntary upper limb movements that are identifiable by 

IMU-based system. Patients at stage VI are also omitted as their limb mobility is similar to 

healthy people as defined in Brunnstrom Approach and usually they do not require 

supervised training services provided in the hospital rehabilitation centre. Therefore, healthy 

staff members were chosen to form the stage VI group in the experiment. The patients 

participated in the experiment consisted of 12 men and 9 women with an average age of 58.7 

and a range of 45 to 78 years old. During the selection process, the patients with severe 

cognitive, perceptual or communication problem, or any other health condition that is not 

suitable for the experiment were excluded. All the patient subjects were examined by 

experienced physicians for Brunnstrom stages prior to the experiment, the human 

observation based results were used to examine the validity of the proposed approach. 

A shoulder touching exercise was selected to be performed by every subject for motion 

sampling purpose. The exercise movement involved lifting the impaired arm forward to a 

90-degree angle, and then moving it horizontally until the hand reaches the shoulder on the 

other side before returning to the starting position. The motion is commonly used in stroke 

rehabilitation as an upper extremity Active Assistive Range of Motion (AAROM) exercise, 

which means the patient is encouraged to actively drive the muscle surrounding the shoulder 

and elbow joints with only necessary amount of assistive support. However, in order to test 

patient’s actual body function, the movement was performed as an Active Range of Motion 

(AROM) in the experiment and all the participants have to carry out the exercise without 
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any assistance. In order to execute the movement, voluntary muscle contraction is required 

from multiple muscle groups. The extension and flexion movements of the arm can 

demonstrate the level of spasticity and the presence of synergy patterns. In order to smoothly 

complete the motion, muscle strength and joint flexibility will also be tested. Therefore, this 

exercise is considered as a benchmark that covers most of the attributes of upper limb motor 

function required for Brunnstrom Classification. 

During the sampling experiment, the subjects were initially ordered to rest at general 

sitting position for two minutes. Before the beginning of the sampling process, they were 

guided to perform the exercise several times with the assistance from a trained physician 

until they were familiar with it. They were then required to complete five valid repetitions 

of the exercise individually which were tracked by the IMU sensors. A valid repetition must 

be a coherent movement without interruption, and each repetition is required to be completed 

within a 10 seconds timing window. The sampled motion data were fed into the software 

signal processing module with a 50Hz low-pass filter to prevent aliasing. Twenty-seven 

feature variables were then extracted before the PCA can be applied for further analysis. 
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TABLE 3-1 LIST OF KINEMATIC FEATURES FOR BRUNNSTROM CLASSIFICATION 

Feature 

type 
Feature name Feature description 

Maximum 

Magnitude 

AMP_X1,AMP_X2,AMP_Y1 

AMP_Y2,AMP_Z1,AMP_Z2 

The maximum magnitude found for the data 

sequences of each axis from two sensor 

node. They are calculated by simply taking 

the average of the maximum value from 5 

movement repetitions. 

Quadratic 

Mean 

RMS_X1,RMS_X2,RMS_Y1 

RMS_Y2,RMS_Z1,RMS_Z2 

The quadratic mean found for the data 

sequences of each axis. They are calculated 

by averaging the RMS value of 5 movement 

repetition for each axis. 

Energy        

ratio 
ENE_X,ENE_Y,ENE_Z 

The ratio of two average signal waveform 

energies measured from two sensor nodes. 

Each waveform energy component is 

defined in (4) 

Acceleration ACC_X,ACC_Y,ACC_Z 

The summation of the difference found 

between two adjacent samples on each axis 

to reflect the high frequency component in 

the movement. 

Consistency CONSIST_X,CONSIST_Y,CONSIST_Z 

The measure of consistency which is the 

maximum value found in cross-correlation 

sequences computed between every two 

movement repetitions. 

Duration DUR 

The active motion duration which is the 

length of the data where the magnitude is 

higher than the RMS value. 

Variance VAR_1,VAR_2 
The average variances of DUR which is 

another measure of consistency. 

Synergy  

Coefficient 
SYN_X,SYN_Y,SYN_Z 

The feature for evaluating independency 

between forearm and upper arm. It is 

Calculated by summating the normalized 

cross-correlation result of the data 

sequences from two sensors, as defined in 

(5) and (6). 
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3.2 RESULT AND DISCUSSION 

In Figure 3-5, a comparison of motion data sampled from stroke patients at Brunnstrom stage 

III and V is shown. As can be clearly observed, the subject at stage V demonstrates a 

significantly better capability of performing isolated joint movement consistently with 

controlled speed and extensive reach. In contrast, the motion sample of stage III subject 

shows very limited moving range and a strong synchronized pattern caused by obligatory 

synergies, which is a signature symptom during the stage III of the recovery process. It can 

also be observed that the stage III subject was struggling to complete the exercise naturally 

by returning the limb to the starting position through a controlled trajectory as the high 

spasticity was restricting the elbow joint extension.  

The loading plot in Figure 3-6a and Table 3-1 listed all the feature variables extracted 

from the motion data samples and their contribution to the principal components obtained 

from PCA. 

AMP_X1, AMP_X2, AMP_Y1, AMP_Y2, AMP_Z1, AMP_Z2 are the maximum 

magnitude found for the data sequences of each axis from two sensor nodes. They are 

calculated by simply taking the average of the maximum value from the five movement 

repetitions. RMS_X1, RMS_X2, RMS_Y1, RMS_Y2, RMS_Z1, RMS_Z2 are the quadratic 

mean found for the data sequences of each axis.  They are calculated by averaging the RMS 

value of the five movement repetition for each axis. ENE_X, ENE_Y, ENE_Z are the ratio 

between the average energy stored in the waveform that measure from two sensor nodes. 

The energy stored in each data sequence is calculated by: 
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                               (4) 

where N is the length of the data sequence. 
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Figure 3-5. A comparison between the 3-axis motion data recorded from stage III stroke 

patient (a) and stage V stroke patient (b). The plots are the superposition of the data from 5 

movement repetitions in order to demonstrate the motion consistency. 
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Stage III sensor 1 
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Stage V sensor 1 
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ACC_X, ACC_Y, ACC_Z are the added maximum difference found between two 

adjacent samples on each axis to reflect the high-frequency component in the movement. 

CONSIST_X, CONSIST_Y, CONSIST_Z are the measurement of consistency which are 

the maximum value found in cross-correlation sequences computed between every two 

movement repetitions. DUR is the active motion duration which is the duration of the data 

when the magnitude is higher than the RMS value, and VAR_1 and VAR_2 are the averaged 

variance of DUR which is another measure of consistency. SYN_X, SYN_Y, SYN_Z are 

the features for evaluating the independence between forearm and upper arm. It is calculated 

by summating the normalized cross-correlation result of the data sequences from two sensors, 

as in 
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where σx1 and σx2 are the standard deviations of the data sequences from two sensors. 

As can be seen clearly from Figure 3-6a, the projected data is following the trend of 

Brunnstrom model along the 2nd principal coordinate since most of the stage III data are 

projected at the bottom of the plot whereas the ones at higher recovery stages can be found 

at the top. The correlation between the 2nd principal component and the Brunnstrom stage 

can also be observed from Figure 3-6a. The feature variables such as SYN and VAR exhibit 

clear negative contributions to the loading plot which indicates that the motion samples with 

less isolated joint movement and consistency would have a lower score after projection. This 

agrees with the Brunnstrom approach’s primary principle of focusing on synergies and 

voluntary movement. In contrary, features such as AMP_X1 and RMS_X1 are positioned in 

the opposite direction of the 2nd principal coordinate which shows a high positive correlation 

with stroke recovery progress. This is because the most difficult part of the 
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Figure 3-6. a) Loading plot of all the feature variables. b) Observation projection on 

the plane of principal component 1 and 2 labelled with Brunnstrom stage. 
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sampled exercise movement is the horizontal shoulder reaching motion along the sensor’s 

x-axis. It involves biceps contraction and requires certain strength and flexibility to hold the 

elbow in the air during the entire motion. The patients in the early stage of stroke recovery 

will encounter great difficulty to complete this part of the movement due to the severe 

spasticity. Therefore, the subjects, who completed the motion with a greater magnitude on 

sensor's x-axis, will generally be classified as higher recovery stage. On the other hand, the 

1st principal component can be seen as a measure of force and control. It can be seen that 

many attributes related to control, including consistency (CONSIST) and duration (DUR), 

have strong contributions to the positive side of the 1st principal coordinate, whereas other 

features such as acceleration (ACC) have negative correlations to the principal component. 

This shows that the motion samples located at the right side of the coordinate have lower 

speed and amplitude which could indicate the lack of strength. However, this is sometimes 

resulted from factors other than impairments such as age, gender, and attitude. At the same 

time, the samples located at the left side demonstrate a stronger motion. However, it can also 

be due to the excessive body swing or the sudden falling motion which happens when the 

patient is unable to complete the exercise as a result of lack of muscle endurance or 

flexibility. It is also interesting to see that, although the 1st principal component axis cannot 

represent the patients’ recovery progress in general, it is very effective in separating the 

patients at stage IV or V, which is a difficult task even for experienced physicians. The 

reduced influence of spasticity in stage V patients gives them more movement range, 

strength, and confidence in performing the exercise. It can also help some patients to achieve 

greater motion speed and magnitude. Another significant difference is the disappearance of 

synergy patterns especially in Y-axis, which indicates the patient’s ability of flexing the 

elbow without lifting the entire upper arm in order to touch the shoulder. This feature is also 

greatly associated with the 1st principal component axis. 

After PCA, the data projected onto 1st and 2nd principal components were used as the 

input to the fuzzy inference system and were fuzzified with predefined MFs. Figure 3-7 

demonstrates the MFs for both inputs optimized by ANFIS. It can be seen that the three MFs 

which correspond to three fuzzy sets are defined for each input and Gaussian curve MF is 

selected due to its smooth and symmetrical shape, which is given by:  
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The surface plot in Figure 3-8 shows the relationship between the input and the output 

of the inference system which is defined by the fuzzy if-then rules. As can be seen, the shape 

of the surface matches the observation projection plot in Figure 3-6. The highest score was 

recorded when the value of the 1st principal component was ‘medium’ and the value of the 

2nd principal component was ‘high’. As a result, the subject who had average strength and 

endurance but can perform highly isolated joint movement was classified with the highest 

Brunnstrom stage. On the other hand, fast motion speed, strong force or long endurance with 

no enough control and independent joint movement was given in a lower score.  

The result of system performance test is presented in Table 3-2. In order to ensure an 

unbiased validation, Leave-One-Out (LOO) cross-validation method was employed during 

the experiment. The testing result has been compared with the judgment made by a group of 

three rehabilitation experts with more than 20 years of experience. As can be seen, the 

classification results for stage III and VI are almost perfectly matched with the doctor’s 

evaluation. However, the unequal size of the sample groups for different Brunnstrom stages, 

especially the lack of samples for stage IV patients, jeopardized the classification accuracy. 

This effect was amplified under LOO cross-validation test because when a testing sample is 

drawn from a smaller Brunnstrom stage group, the training data set will be unbalanced. 

Overall, an accuracy of 87.5% was achieved in this experiment which is quite promising. 

PCA is known for its 2nd order statistics nature and its performance improves when more 

observation data for each group can be evenly added to the system to form a near Gaussian 

distribution. Therefore, classification accuracy is expected to increase with the growth of the 

collected patient data. 
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TABLE 3-2 BRUNNSTROM STAGE CLASSIFCATION RESULT 

 Brunnstrom Groups Total 

 Stage III Stage IV Stage V Stage VI  

Actual No. of patients 10 3 8 3 24 

Correct count 9 2 7 3 21 

Correct rate 90% 66.7% 87.5% 100% 87.5% 

 

 

 

Figure 3-7.Input MFs for Principal component 1 and 2 
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Figure 3-8. Input-output Surface plot: principal components 1 and 2 vs. Brunnstrom 

recovery stage 

 

3.3 SUMMARY 

In this chapter, a novel approach for objective Brunnstrom stage classification has been 

proposed. In the experiment, over 200 motion samples were collected and tested for 

Brunnstrom stage classification from 24 subjects, including 21 actual stroke patients. An 

overall 87.5% of the classification results agreed with the doctors’ assessment while 90%, 

87.5%, and 100% accuracies were achieved for identifying patients at Brunnstrom stage III, 

V and VI, respectively. Based on the outcome of the experiment, the PCA and fuzzy 

inference system based approach is capable of producing valid and quantitative result that 

evaluates stroke patient’s recovery progress and it can be implemented as an alternative to 

the conventional human-based process of Brunnstrom recovery stage classification.  
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Chapter 4   

QUANTITATIVE LIMB MOBILITY 

EVALUATION  

 

In this chapter, a novel single-index based assessment system for quantitative evaluation of 

upper extremity mobility in post-stroke rehabilitation will be presented. The proposed 

measure can serve as a reliable evidence for unified body function classification to improve 

individualized rehabilitation training or as an intuitive feedback to facilitate patient’s 

rehabilitation training in both supervised and unsupervised environment. The evaluation 

process employs a constrained Dynamic Time Warping (DTW) based technique to generate 

objective and consistent quantitative results to reflect patient’s motion quality in relation to 

predefined templates and thus manifest limb mobility. The process is also designed to be 

inexpensive to perform, both financially and computationally. Therefore, the proposed 

method utilizes 20Hz 3-axis accelerometer data collected using a single IMU attached to the 

patients’ wrist. The evaluation of the mobility index involves a normalization process that 

only requires the lower bound distance calculation which is also used for indexing DTW 

[224] and the upper bound distance which can be calculated in O(n). The validity and 

reliability of the proposed assessment index have been tested with 120 motion samples 

collected from 21 stroke patients and three healthy participants. The patients’ limb function 

impairment levels are classified using Brunnstrom stages of recovery by an expert panel. 

The statistical difference in the evaluation results for the patients with different impairment 

level, and the correlation between the proposed metric index and Brunnstrom stages are 

investigated. A classification experiment has also been conducted using K-NN classifier to 

test the proposed index score’s feasibility as a feature for automatic impairment level 

classification. 
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4.1 METHODOLOGY 

The implementation of the proposed assessment system is illustrated in Figure 4-1. The 

training motion samples are first collected from both rehabilitation professionals and stroke 

patients using a wireless IMU. A 5th order median filter is utilized to remove the transient 

spikes in the signal caused by random shocks without distorting the waveform. Training 

motion templates are generated by averaging motion samples collected from rehabilitation 

experts.  Constrained DTW is used as templates matching method in order to cope with the 

non-stationary and nonlinear variations caused by non-pathological features in each motion 

sample. The DTW distance computed is then normalized to produce an index for the 

proposed mobility evaluation metric system. In the experiment, a classification test using 

three different classifier, namely K-Nearest-Neighbour (KNN), Quadratic Discriminant 

Analysis (QDA), and Naïve Bayes (NB) classifier, have been performed to demonstrate the 

proposed assessment index’s validity and feasibility as a feature for objective Brunnstrom 

stage classification. The detail of the experiment setup and methods are explained in the 

following sections. 
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Figure 4-1. The implementation of the proposed assessment system for limb mobility 

evaluation 
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4.1.1 DYNAMIC TIME WARPING 

DTW is a dynamic programming algorithm that is commonly used for temporal sequences 

similarity measurement in template matching application. It is well known for its non-linear 

time normalization effect which can compensate the timing differences between two 

temporal sequences by warping the time axis before calculating the minimized residue 

distance [225]. Compared to Euclidean distance or cross-correlation based template 

matching algorithms, DTW is more flexible and robust due to its ability to accommodate 

both phase and speed variations and it has been widely implemented in automatic speech 

recognition [225] and biomedical signal analysis applications such as Electrocardiography 

(ECG) [226, 227] and Photoplethysmograph (PPG) [228]. To compute DTW distance for 

two time series S = {Si|i = 1,2, … , n} and T = {Ti|i = 1,2, … ,m}, a n ×m distance matrix 

D is first constructed where the (ith, jth) element of D is the Euclidian distance between the 

two matching points from the original time-series:  D(i, j) = √(Si − Tj)2. The warping path 

w = {wk|k = 1,2, … , K} which represents the possible alignments between the two original 

time series can then be defined as each element of w is a pair of mapped points from S and T: 

wk = (ik, jk) with following conditions: 

 

 Monotonic conditions:  ik−1 ≤ ik and jk−1 ≤ jk. 

 Continuity conditions:  ik − ik−1 ≤ 1 and jk − jk−1 ≤ 1. 

 Boundary conditions:  i1 = j1 = 1, iK = n, jK = m. 

 

To avoid warping path with excessive timing difference and to ultimately improve 

computation efficiency, an additional locality constraint can be added: |𝑖𝑘 − 𝑗𝑘| ≤ 𝑟 where 

r is a positive integer which can be tuned according to the length of the input time series[225]. 

Finally, the DTW distance D𝑑𝑡𝑤 can be calculated by accumulating the distance along the 

optimal warping path W which covers the least distance: 

D𝑑𝑡𝑤 = ∑ 𝐷(𝑊𝑖)
𝐾
𝑖=1                                                     (7) 



85 

 

 

 

 

 

and it can be implemented using the dynamic programming: 

𝑑𝑖,𝑗 = D𝑖,𝑗 +min{

𝑑𝑖−1,𝑗
𝑑𝑖,𝑗−1
𝑑𝑖−1,𝑗−1

                                                 (8) 

and 

 

D𝑑𝑡𝑤 = d(W𝐾) = d𝑛,𝑚.                                                            (9) 

 

 

A demonstration of DTW distance calculation is presented in Figure 4-2. As can be 

seen, the obvious dissimilarity in motion speed between the candidate motion sample and 

the template is compensated by realigning the two data sequences and resulted in an optimal 

match. The distance matrix between the two sequences is visualized in Figure 4-2c. The 

darker area surrounding the diagonal line indicates warping paths with small distance and 

the red line shows the optimal path which can lead to shortest DTW distance. The locality 

constraint can be seen in Figure 4-2d. When DTW is implemented in our study, 25% of the 

data length of the longer candidate sequence is used as locality constraint. However, in 

accordance with the boundary condition of DTW, the length difference between the two data 

sequences will be used as a constraint if its value is greater than the calculated constraint as 

shown in (10).    

 

r = max {Round(0.25 ∗ max
(m, n)) 

m − n
                                       (10) 
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DTW has a computational complexity of O(nm), hence, it can be difficult to compute 

efficiently when used with high-resolution samples or large sample size and due to that DTW 

distance does not obey the triangular inequality and cannot be easily indexed as Euclidean 

distance [229]. To address this issue, a number of researchers have proposed techniques to 

fast compute an exact lower bound distance for DTW that satisfies the triangular inequality 

and eventually enables exact indexing to reduce the computation time without allowing false 

dismissals [224, 230, 231]. The lower bound distance introduced in [224] will also be used 

to normalize the DTW distance and generate the mobility index in the proposed system.  

 
(a) 

 
(b) 

 
c)                                                      d) 

Figure 4-2. A demonstration of DTW distance calculation on sampled motion data. a) Original 

x-axis candidate data (red dotted) and template(blue) b) Warped candidate date(red dotted) and 

template(blue) c) Unconstrained DTW d) DTW with locality constraint of 25% data size 
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4.1.2 EXPERIMENT PROTOCOL 

The motion sampling experiment was conducted in collaboration with the rehabilitation 

medical centre of the 2nd Hospital of Jiaxing in Jiaxing, China and was approved by the ethic 

committees of RMIT University and the 2nd Hospital of Jiaxing. Overall, 21 patients (12 

males, 9 females, mean age 58.7±19.3 years) and 3 rehabilitation doctors as healthy subjects 

participated. The patient subject selection was based on the following inclusion criteria: 1) 

the participant must have no hemodynamic instability, 2) no severe cognitive impairments, 

3) no dementia, 4) no major post-stroke complication, 5) able and willing to give consent, 6) 

Due to the reason that the patients at Brunnstrom stage I and II are unable to perform 

unsupported upper extremity voluntary movement which can be captured using the IMU 

sensor, only patients at stage III and above will be included in the experiment. All patient 

subjects were examined by an expert panel for Brunnstrom stages prior to the sampling 

experiment. The panel members are selected from rehabilitation doctors who have 1) 

extensive clinical experience with stroke patients and stroke rehabilitation, 2) experienced 

in conducting stroke rehabilitation related medical research. The healthy participants were 

grouped as Brunnstrom stage VI in the experiment based on the definition of Brunnstrom 

Approach.  

A shoulder touching exercise was selected as the sample training motion to examine 

subject’s limb mobility in the experiment. The motion starts with raising the impaired arm 

to horizontal level, and then adducting the elbow to touch the opposite shoulder with hand 

before gently lowering the arm to the starting position. This movement is commonly 

practiced as a rehabilitation training exercise and was performed as an Active Range of 

Motion (AROM) during the experiment where all the participants have to complete the 

exercise without any assistance to reflect their actual body functioning. Voluntary muscle 

contraction from multiple muscle groups can be observed during completion of the 

movement. The extension and flexion motion of the elbow joint can demonstrate the level 

of spasticity and the presence of synergy patterns. In order to complete the motion smoothly, 

muscle strength, and joint flexibility were also tested. Therefore, this exercise is considered 

as a benchmark to reflect stroke patient’s limb mobility in general and body function 

impairment level.  
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During the sampling experiment, the subjects were initially asked to rest at general 

sitting position for two minutes. Before the sampling began, they had been requested to 

perform the exercise several times with the guidance of a trained physician until the motions 

were familiarized. Then they were required to complete five valid repetitions of the exercise 

individually and were tracked by a wireless IMU. A valid repetition must be a coherent 

movement without interruption, and each repetition was required to be completed during a 

10s timing window. An instruction video is looped during the sampling process to help the 

motion synchronization. 

A single low-cost IMU was adopted in this study for sampling motion data from 

subjects. Non-visual based wearable IMU motion tracking devices are commonly utilized in 

rehabilitation training supervision applications, especially in home or community-based 

training environments, where resources are limited [140, 232-234]. Compared to visually 

based systems, IMU devices are relatively cheaper, more compact, and are easier to setup 

and operate. The wireless sensor node used in the experiments mainly consisted of a 3-axis 

accelerometer that has a capability of capturing acceleration information up to 30 m/s2 and 

a low power Zig-Bee based communication module powered by a 3.7 V, 1000 mAh Polymer 

Lithium Ion battery. The sensor samples the motion at 20 Hz to principally capture the slow 

varying static acceleration that indicates tilting angle and the low sampling rate can help to 

reduce the computational cost of DTW. The placement of the sensor nodes in the experiment 

is shown in Figure 4-3. 

 

Figure 4-3 .The placement of the IMU for quantitative limb mobility evaluation 
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4.1.3 MOBILITY INDEX 

As introduced in the previous section, DTW technique can effectively reject 

dissimilarities/influences caused by motion speed and delay. However, it is very sensitive to 

amplitude difference as minimal changes in motion magnitude can significantly affect the 

output distance. Despite the fact that the motion magnitude can be considered as an important 

aspect of motion quality, it is only able to partially reflect patient’s limb mobility when other 

patient conditions and attributes are comparable. When assessing a patient’s body function 

and mobility in stroke rehabilitation application, it is also important to examine the patient’s 

ability of completing exercise motion with correct trajectory which can help to detect muscle 

flaccidity, spasticity and synergy patterns. Therefore, in the proposed approach, a mobility 

index obtained by normalizing DTW distance with estimated upper and lower bound is used 

to evaluate patient’s limb mobility. The normalization process scales the unbounded output 

distance down to a defined range in relation to the theoretical extrema which makes the 

results more comparable and reduces the sensitive to general motion magnitude variation. 

As a result, the mobility index is more suitable as an assessment score to facilitate post-

stroke rehabilitation training and generate more accurate result when adopted as input feature 

for automatic body function impairment classification. The benefit of the proposed mobility 

index will be further demonstrated in section 4.2 and 4.3. 

Let S = {𝑆𝑖|𝑖 = 1,2, … , 𝑛}  be the candidate training motion data sequence and T =

{𝑇𝑖|𝑖 = 1,2, … ,𝑚} is the motion template sequence. The mobility index is defined as: 

 

𝑄𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦(𝑆, 𝑇) = 1 −
𝐷𝑑𝑡𝑤(𝑆,𝑇)−𝐷𝑙𝑏(𝑆,𝑇)

𝐷𝑢𝑏(𝑆,𝑇)−𝐷𝑙𝑏(𝑆,𝑇)
                                     (11) 

with 

𝐷𝑙𝑏(𝑆, 𝑇) = max

{
 

 
|𝐹𝑖𝑟𝑠𝑡(𝑆) − 𝐹𝑖𝑟𝑠𝑡(𝑇)|

|𝐿𝑎𝑠𝑡(𝑆) − 𝐿𝑎𝑠𝑡(𝑇)|

|𝑚𝑎𝑥(𝑆) −𝑚𝑎𝑥(𝑇)|

|𝑚𝑖𝑛(𝑆) −𝑚𝑖𝑛(𝑇)|

                                 (12) 
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𝐷𝑢𝑏(𝑆, 𝑇) = 𝑚𝑎𝑥(𝑚, 𝑛) ∗ max {
|𝑚𝑎𝑥(𝑆) − min (𝑇)|

|𝑚𝑖𝑛(𝑆) − 𝑚𝑎𝑥(𝑇)|
                           (13) 

 

where 𝑄𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 is the proposed mobility index. 𝐷𝑑𝑡𝑤(𝑆, 𝑇) is the DTW distance between 

candidate sequence S and Template T. 𝐷𝑙𝑏(𝑆, 𝑇) is the lower bound distance for 𝐷𝑑𝑡𝑤(𝑆, 𝑇) 

as introduced in [224] which is originally designed for exact indexing DTW. 𝐷𝑢𝑏  is the 

estimated upper bound distance for 𝐷𝑑𝑡𝑤(𝑆, 𝑇)  which is calculated by multiplying the 

maximum distance with the length of the diagonal path. It is assumed that the distance 

between the two data sequences is the largest when they are uniformly separated by the 

maximum possible distance and no warping action will occur. The dynamic range of 𝑄𝑚𝑜𝑡𝑖𝑜𝑛 

is (0, 1]. The maximum quality 1 is achieved when  𝐷𝑑𝑡𝑤(𝑆, 𝑇) is equal to the lower bound 

distance 𝐷𝑙𝑏(𝑆, 𝑇) or the candidate sequence matches the template exactly. As the difference 

between the two sequences increases, the mobility index keeps reducing and approaching 0. 

In practical situation, when the training motion in the template is performed by the candidate 

voluntarily and recorded using the proposed device and setting, the mobility index will 

generally range from 0.65 to 0.98. 
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4.2 EXPERIMENT RESULT 

Figure 4-4 shows a comparison between motion samples. The motion template generated by 

averaging the DTW warped motion data sampled from 3 different rehabilitation doctors is 

shown in Figure 4-4a. The motion samples collected from a Brunnstrom stage VI subject 

and a stage III subject are presented in Figure 4-4b and Figure 4-4c respectively. It is clear 

from the images that the stage VI subjects are generally able to follow the predefined motion 

trajectory more accurately and consistently with controlled speed, whereas the stage III 

samples tend to be jerky and inconsistent which are signs of lack of strength, stability and 

dexterity. It can be seen that the stage III patient also has difficulty reaching the target 

position as the motions always terminate earlier due to the limitation of joint flexibility and 

excessive muscle spasticity. The dissimilarities in the motion trajectory can clearly reflect 

the limitations of the subject’s upper limb mobility. 

The mobility evaluation results including the medians, 25th and 75th percentiles and 

non-outliner ranges of both the DTW distance and mobility index calculated for each 

impairment groups and individuals are presented in Table 4-1. The 24 subjects are classified 

into four impairment groups based on their Brunnstrom stage evaluated by the expert panel 

prior to the experiment. Stage III subjects suffer from severe motor function impairment and 

their limb mobility is considerably limited due to excessive spastic hypertonia. Both the 

DTW distance and mobility index suggest that stage III subjects’ motion quality is relatively 

poor and inconsistent. Although some individuals, such as S8, are capable of achieving 

single motion mobility index as high as 0.880, a large fluctuation in performance can be 

observed which indicates disadvantaged limb control and endurance. Stage IV and stage V 

subjects were affected by mild to moderate impairment. The declining muscle spasticity and 

obligatory synergy motion patterns enable the patients to perform more isolated voluntary 

limb motions and complete the exercise motion with higher precision. This improvement is 

clearly verified in the mobility evaluation result as the group DTW distance median dropped 

45% from 58.2 to 32.0 and the mobility index median increased by 10.7% from 0.782 to 

0.866. However, due to stroke-induced pain and impaired muscles control, some subjects 

such as S21 at this stage also tend to perform with even wider range of motion quality due  
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(a) 

 
(b) 

 
(c) 

Figure 4-4.a) The 3-axis motion template for shoulder touching exercise. b) Five 

exercise motion samples collected from a stage VI subject. c) Five exercise motion 

samples collected from a stage III subject. 
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to few underperformed motion samples. Stage VI subjects in this experiment are healthy 

participants and a significant leap in motion quality can be observed in the result compared 

to stroke patient subjects. The subjects in this group are not only able to complete training 

motions with remarkably high quality but also retain very high consistency. The difference 

between subjects is also relatively smaller as all health participants do not suffer from any 

limitation in limb mobility and can precisely adhere to the predefined motion trajectory.  It 

TABLE 4-1 LIMB MOBILITY EVALUATION RESULTS 

 

Group SUBJECT 
No. of 

Samples 

 

DTW Distance 

 

Mobility Index 

Median 

25th -75th 

Percentile 

 

Min-Max 

Range 
Median 

25th -75th 

Percentile 

 

Min-Max 

Range 

S
ta

g
e 

II
I 

S
ev

er
e 

Im
p
a

ir
m

en
t 

S1 5 49.3  12.4 (45.9-58.3) 0.782  0.074 (0.747-0.821) 

S2 5 60.8  15.2 (58.1-73.2) 0.769  0.054 (0.735-0.789) 

S3 5 57.4  16.8 (45.1-61.9) 0.850  0.050 (0.822-0.872) 

S4 5 69.8  10.9 (68.9-79.9) 0.751  0.045 (0.715-0.759) 

S5 5 46.4  19.5 (42.6-62.1) 0.782  0.019 (0.778-0.797) 

S6 5 37.9  13.8  (27.5-41.2) 0.836  0.044 (0.829-0.872) 

S7 5 48.1  14.0 (40.9-54.8) 0.802  0.059 (0.761-0.820) 

S8 5 39.1  13.5 (33.6-47.1) 0.838  0.074 (0.806-0.880) 

S9 5 87.8  14.9 (83.0-98.0) 0.743  0.039 (0.719-0.758) 

S10 5 82.6  20.4 (71.9-92.3) 0.770  0.060 (0.754-0.814) 

S11 5 114.5  16.1 (102.6-118.7) 0.769  0.025 (0.757-0.782) 

Group 

Result 
55 58.2 

33.9 

 (45.3-79.2) 
91.3 (27.4-118.7) 0.782 

0.063 

 (0.759-0.822) 
0.165 (0.715-0.880) 

S
ta

g
e 

IV
 

M
o
d

er
a

te
 I

m
p
a
ir

m
en

t S12 5 26.5  9.6 (20.8-30.4) 0.875  0.030 (0.857-0.887) 

S13 5 20.7  15.0 (17.2-32.3) 0.907  0.032 (0.887-0.919) 

S14 5 35.1  17.1 (18.4-35.5) 0.876  0.056 (0.873-0.929) 

S15 5 43.4  6.4 (39.9-46.2) 0.796  0.054 (0.780-0.835) 

S16 5 45.9  37.9 (25.6-63.5) 0.885  0.068 (0.844-0.912) 

Group 

Result 
25 32.9 

15.3 

 (25.5-40.8) 
48.3 (17.2-65.5) 0.866 

0.042  

(0.848-0.890) 
0.133 (0.796-0.929) 

S
ta

g
e 

V
 

M
il

d
 I

m
p

a
ir

m
en

t 

S17 5 24.5  9.0 (22.5-31.5) 0.880  0.056 (0.843-0.898) 

S18 5 29.3  2.9 (27.9-30.7) 0.875  0.013 (0.869-0.883) 

S19 5 19.6  4.4 (15.5-19.9) 0.912  0.030 (0.905-0.935) 

S20 5 19.4  5.8 (15.0-20.8) 0.918  0.011 (0.916-0.927) 

S21 5 25.6  25.7 (11.8-37.5) 0.868  0.094 (0.841-0.935) 

Group 

Result 
25 22.5 

8.5 

 (19.6-28.1) 
25.7 (11.8-37.5) 0.897 

0.044 

 (0.874-0.918) 
0.095 (0.840-0.935) 

S
ta

g
e 

V
I 

N
o
 I

m
p
a

ir
m

en
t S22 5 8.3  4.7 (5.8-10.5) 0.966  0.021 ( 0.957-0.978) 

S23 5 10.1  2.4 (8.8-11.2) 0.960  0.010 (0.959-0.969) 

S24 5 6.7  1.3 (5.7-7.0) 0.969  0.007 (0.965-0.972) 

Group 

Result 
15 8.3 

3.6  

(6.4-10.0) 
5.5 (5.7-11.2) 0.966 

0.009 

 (0.960-0.969) 
0.021 (0.957-0.978) 

Summary 120 37.7 
37 

 (20.7-57.7) 
113 (5.7-118.7) 0.857 

0.124 

 (0.782-0.906) 
0.263 (0.715-0.978) 
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is worth noting that the proposed mobility index has exhibited superior ability to suppress 

excessive influences of motion magnitude difference and reduce the variance within each 

group compared to the original DTW distance. For instance, S11 is considered as an extreme 

case in stage III group due to the large DTW distance. The subject failed to raise the elbow 

to the required height voluntarily during the first stage of the motion therefore caused a 

significant dissimilarity in signal magnitude despite the ability to complete the motion 

reasonably well on the horizontal axis.  However, when the subject was evaluated using the 

proposed mobility index, the influence of magnitude difference was suppressed and thus the 

result can correctly reflect the patient’s performance. 

The evaluation results are visualized in Figure 4-5. Significant difference can be 

observed on the mobility index of subjects from different Brunnstrom stage groups (p<0.001, 

95% CI: 16.5, 23.7, two-tailed Welch t-test) and a strong correlation can be found between 

the mobility index and the subject’s Brunnstrom stage (r=0.8523, p<0.001) which is an 

improvement from the correlation estimated using the original DTW distance (r=-0.7669, 

p<0.001). By observing the difference in the distribution of the DTW distance and mobility 

index in Figure 4-5c and Figure 4-5f, it can be seen that the mobility index was able to better 

differentiate the different impairment groups especially for groups at stage III and VI, and 

their medians as indicated using red markers are more evenly and sparsely separated to help 

reducing class overlapping in classification applications. 

The computation speed test was performed on a workstation with Intel Core i5-2467M 

1.6GHz CPU with 4 GB RAM using MATLAB® in Windows environment. Each operation 

was executed for 360 times to estimate the average performance. The average time 

consumed for computing DTW distance is 8 milliseconds or 3.6 milliseconds with 25% 

constraint. The average time consumed for mobility index estimation is 3.8 milliseconds.  
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In order to prove the applicability of the proposed assessment system, a series of 

Brunnstrom stage classification tests have been conducted with proposed limb mobility 

index as input features. Table VII, VIII, IX shows the confusion matrix for the LOO 

classification test. The maximum overall classification accuracy 85.83% is achieved when 

using KNN classifier with k=3. It can be seen that the obvious difference in limb mobility 

evaluation result between healthy and stroke patients has ensured that stage VI group can 

always be classified with 100% accuracy and sensitivity. Relatively low class sensitivity is 

presented for stage IV and V patients in all three classification methods. According to the 

definition of Brunnstrom stages [12, 13], the major difference between the two groups is the 

development of synergy pattern and isolated joint movements which can be unapparent when 

measured using single IMU. Additional features are required to further distinguish the 

specific motion patterns in each group. 
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                            a)                                                                                                    b)  

    
                           c)                                                                                                 d) 

      
 

       e)                                             f) 

Figure 4-5. A comparison of the DTW distance and the mobility index a) comparison of DTW 

distance evaluated for subjects from different impairment groups b) correlation between DTW 

distance and Brunnstrom stage c) the distribution of DTW distance d) comparison of mobility 

index evaluated for subjects from different impairment groups e) correlation between 

proposed mobility index and Brunnstrom stage f) the distribution of mobility index 
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TABLE 4-2 CONFUSION MATRIX OF BRUNNSTROM CLASSIFICATION (NAIVE BAYES) 
 

 
Stage 

III 

Stage 

IV 

Stage  

V 

Stage 

VI 

Classified 

Sum 

Stage III 47 5 1 0 53 

Stage IV 6 9 8 0 23 

Stage V 2 11 16 0 29 

Stage VI 0 0 0 15 15 

No. of 

Sample 
55 25 25 15  

Sensitivity/ 

Accuracy 
85.5% 36% 64% 100% 72.5% 

 

 

TABLE 4-3 CONFUSION MATRIX OF BRUNNSTROM CLASSIFICATION (QUADRATIC 

DISCRIMINANT ANALYSIS) 
 

 
Stage 

III 

Stage 

IV 

Stage  

V 

Stage 

VI 

Classified 

Sum 

Stage III 47 5 1 0 53 

Stage IV 4 13 3 0 20 

Stage V 4 7 21 0 32 

Stage VI 0 0 0 15 15 

No. of 

Sample 
55 25 25 15  

Sensitivity/ 

Accuracy 
85.5% 52% 84% 100% 80% 

 

TABLE 4-4 CONFUSION MATRIX OF BRUNNSTROM CLASSIFICATION (KNN) 
 

 
Stage 

III 

Stage 

IV 

Stage  

V 

Stage 

VI 

Classified 

Sum 

Stage III 51 6 2 0 59 

Stage IV 3 15 1 0 19 

Stage V 1 4 22 0 27 

Stage VI 0 0 0 15 15 

No. of 

Sample 
55 25 25 15  

Sensitivity/ 

Accuracy 
92.7% 60% 88% 100% 85.8% 
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4.3 DISCUSSION 

In the study presented here, a novel single index based metric system for limb mobility 

evaluation in post-stroke rehabilitation has been developed and its validity has been tested 

against Brunnstrom stages of recovery which is an example of widely used conventional 

clinical ordinal scale.  

The proposed method utilizes motion data that are sampled from stroke patients during 

rehabilitation training using low-cost IMU. The relatively low sampling rate and small data 

size has ensured the practicality of the proposed algorithm without sacrificing its validity 

and sensitivity, as demonstrated in the experiment. The experimental result suggests that the 

proposed method is consistent with the general sequential development of motor recovery 

after stroke. In addition, the high correlation with Brunnstrom stages of recovery has 

revealed its feasibility as input feature for automatic body function impairment classification. 

Template matching based algorithms have been successfully used for differentiating 

training movements in post-stroke rehabilitation training [199, 200]. However, the Euclidean 

distance and cross-correlation based methods are not sufficient for evaluating patients’ 

mobility as they are unable to adapt to various motion speeds. In order to overcome this 

problem, DTW distance is employed in this study. A novel mobility index has also been 

generated to further improve the validity and efficacy of objective mobility evaluation 

without adding significant computation load. The experimental result has demonstrated that 

the proposed mobility index produces superior performance on multiple aspects, compared 

to the original DTW distance. 

After the discovery of the high correlation between the proposed mobility index and 

Brunnstrom stages of recovery, a series of classification experiments have been conducted 

to further examine the applicability of the proposed method. Various types of classifiers have 

been applied including NB classifier, QDA and KNN. The mobility indexes on three motion 

axis are used as the only input features and the performance is evaluated by conducting a 

LOO based validation test to ensure repeatable result. Highly promising results have been 

obtained with maximum 85.83% overall classification accuracy and 92.7% and 100% single 

class sensitivity for stage III and stage VI groups. Compared to specifically designed 

Brunnstrom classification method as in [235], the assessment method proposed in this paper 
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can achieve similar result with much lower complexity in both hardware and software. 

The proposed limb mobility evaluation method is also versatile when being applied in 

post-stroke rehabilitation training. It generates normalized quantitative results which can be 

easily comprehended by stroke patients and recorded by software systems. Therefore, it is 

also a feasible solution for enhancing supervision in TR programs other than providing 

training feedback and evidence for unified body function assessment in general clinical 

settings. 
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4.4 SUMMARY 

In this chapter, a novel metric system for limb mobility evaluation for post-stroke 

rehabilitation has been proposed. The contribution of this study is to provide an objective, 

efficient, and reliable solution for quantitative limb mobility assessment. It can serve not 

only as an intuitive feedback to facilitate patients’ rehabilitation training in both supervised 

and unsupervised environment, but also as a reliable evidence for improving individualized 

rehabilitation training and hence realizing post-stroke body function assessment 

standardization. The experimental results have demonstrated that the proposed index is 

capable of reflecting the difference in movement quality for patients from different 

impairment groups. A strong correlation with widely used Brunnstrom scale and high 

accuracy in the classification test are also indications of its ability as a unified scale for body 

function impairment level assessment. The evaluation process of the proposed index is 

designed to be practical to perform with low financial and computational cost and it can be 

integrated into rehabilitation training systems as an intuitive feedback to guide the patients 

for maintaining high standard training quality. It can also help the clinician to track patient’s 

training effort and recovery progress without having to attend entire training session.   
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Chapter 5  

TRAINING MOTION CLASSIFICATION 

FOR UNSUPERVISED REHABILITATION  

 

In the previous chapters, two novel approaches have been introduced to address the two 

major challenges for realizing unified objective motor function assessment: automatic 

impairment level classification and quantitative mobility evaluation. The aforementioned 

techniques can be integrated into everyday rehabilitation training sessions and substantially 

boost the quality and efficiency of the rehabilitation program by making the patient’s 

recovery progress traceable with quantitative results without an increase of required human 

effort. However, in order to successfully implement these techniques in an environment with 

no or reduced supervision, an automatic motion classification method is also required. The 

patient’s movement during rehabilitation training must be monitored automatically to detect 

the pre-defined motions that can be used for assessment. By identifying the exercise motions 

performed during each training session, the patient’s training effort and adherence can also 

be tracked effectively. The reliability of the motion identification process is essential in this 

application as any misclassification can not only result in false assessment score, but also 

provide misleading feedbacks on patient’s performance and potentially induce negative 

influence to the doctor’s decision.  

In this chapter, a fuzzy kernel motion classifier specifically designed for unsupervised 

rehabilitation is introduced. In order to minimize the cost and operational complexity, the 

combination of non-visual based inertia sensing devices and pattern recognition algorithms 

are often considered more suitable in such applications. However, the high motion 

irregularity due to stroke patients’ body function impairment has significantly increased the 
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classification difficulty. A novel fuzzy kernel motion classifier specifically designed for 

stroke patient’s rehabilitation training motion classification is adopted as a solution to the 

problem. The proposed classifier utilizes geometrically unconstrained fuzzy membership 

functions to address the motion classification even with defective motion samples. In order 

to validate the performance of the classifier, experiments have been conducted using real 

motion data sampled from stroke patients with a broad range of impairment level and the 

results have demonstrated that the proposed classifier is superior in terms of error rate 

compared to other popular algorithms. 
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5.1 POST-STROKE REHABILITATION EXERCISES 

The aim of post-stroke rehabilitation is to improve the life quality of the stroke victims and 

to help their participation and reintegration into the community [4]. One of the greatest 

impact of stroke is the chronic motor deficit including muscle weakness and spasticity, 

which can greatly limits stroke patients’ performance of ADLs and thus jeopardise their 

ability of independent living. Rehabilitation training exercises are designed to address the 

stroke-induced limitations by practicing and improving specific body functions. Some of the 

major objectives that limb motor function training targets are [236]:  

 Promoting flexibility and relaxation of muscles 

 Decrease pain and stiffness 

 Reduce spasm with fatigue and stress 

 Improve balance and endurance 

 Maintain and improve range of motion  

 Improve coordination and speed for completing fine motor tasks 

Different forms of rehabilitation trainings are implemented at the different stages of 

post-stroke recovery to optimize the efficacy. During the initial period after acute stroke 

incident including Brunnstrom stage I & II, the patients suffer from severer flaccidity and 

struggle to perform voluntary movements. In order to provide rehabilitation training to the 

patients at the early recovery stages, Passive Range of Motion (PRM) exercises, which 

involves moving the paretic limbs using only external force, are extensively applied. PRM 

is also crucial for maintaining joint flexibility and preventing contracture. When the patients 

have partially regained motor function, but are still experiencing difficulty to achieve the 

full range of the exercise movement, Assistive Active Range of Motion (AAROM) exercises 

are used. AAROM training encourages patients to actively drive their limb to perform the 

exercise, but external assistance is also allowed to help the patients further extending their 

range of motion. For patients who are mildly affected by stroke or at a higher recovery stage 

such as Brunnstrom V & VI, Active Range of Motion (AROM) exercises are generally 

incorporated into training. AROM occurs when patients can complete the exercise without 

any external assistance and it is an effective mean to improve the muscle strength and 
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endurance. Resistance trainings, which applies additional load to the muscle, are sometimes 

used to further develop the patients’ strength. It is worth noting that, patients who can 

perform most of the exercises in AROM form are more suitable to unsupervised training due 

to less dependence to external support.  However, some of the exercises can be performed 

as PROM or AAROM by introducing self-assistance. Therefore, patients from Brunnstrom 

III or IV can also train in unsupervised environment with the aid of a reliable automatic 

monitoring system. 

The study presented in this chapter is to investigate how to automatically identify 

different exercise motions in a regular rehabilitation training session. Therefore, in order to 

prove the validity of the solution, six classic training exercises that are widely adopted in 

clinical applications are selected for the experiments: Bobath handshake, straight arm palm 

press, shoulder horizontal flexion and extension, forehead reaching with elbow, shoulder 

touching, and wrist turn. The description of each exercise is presented here. 

Bobath handshake is a PROM exercise that is commonly used to improve the 

flexibility of the upper extremity and shoulder. In the experiment, it is performed in a sitting 

position. As demonstrated in Figure 5-1, the exercise involves clasping hands together in 

front of the body and raising both hands up straight towards the ceiling. The unaffected side 

hand can provide assistance to life the paretic side hand. Therefore, this exercise can be 

Figure 5-1. A demonstration of the Bobath handshake exercise 
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completed even the patient is at early stage and suffers severer muscle weakness. However, 

the high spasticity developed during the recovery process or other limiting factor to the range 

of motion such as joint contracture can greatly affect the motion quality.  

Straight arm palm press is another self-assisted PROM that can helps to improve 

upper extremity flexibility. As demonstrated in Figure 5-2, the exercise starts by pressing 

the affected side hand against a flat surface next to the body with the palm facing down. The 

unaffected side hand is placed over the affected side elbow and the then whole body can lean 

towards the affected side to stretch the wrist joint. The magnitude of this movement is 

relatively smaller compared to other exercises, but it can be difficult to perform for the 

patients with stiff forearm flexors and hands. 

 Shoulder horizontal flexion and extension is usually performed as an AAROM 

exercise, which helps to improve not only the upper extremity flexibility, but also the 

strength and endurance of deltoid muscles. The exercise motion is demonstrated in Figure 

5-3. It starts when the affected side arm is held horizontally and fully stretched with the 

fingers pointing the unaffected side. The arm then slowly swings towards the other side while 

keeping the elbow joint extended. This exercise is considered difficult without external 

assistance due to the amount of shoulder strength and endurance required. However, in order 

to test the classification performance in unsupervised environment, this exercise is 

performed as AROM where no external assistance was provided. 

Figure 5-2 A demonstration of the straight arm palm press exercise 
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 Forehead reaching with elbow is an AROM exercise which tests the strength and 

flexibility of the shoulder. As demonstrated in Figure 5-4, the patients are required to place 

the affected side hand on the opposite side shoulder, and then try to reach the forehand using 

the elbow while keeping the fingers on the shoulder and head straight. The movement can 

be performed at least partially without assistance by most of the patients from Brunnstrom 

stage III and above. However, the patients, who suffer from high plasticity, may have 

difficulty placing the hand on top of the opposite side shoulder and thus deform the posture 

and thus making the automatic identification of the movement more difficult.  

  

Figure 5-3. A demonstration of the shoulder horizontal flexion and extension exercise 

Figure 5-4. A demonstration of the forehead reaching with elbow exercise 
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Shoulder touching is the same exercise that is adopted in the automatic impairment 

classifcation and mobility assessment studies that are disucessed previous two chapter. The 

movement involves lifting the affected side arm to horizontal position then flexing the elbow 

to reach the opposite shoulder with hand. It is also an common AAROM exercise and, similar 

to shoulder horizontal flexion and extension, it requires high strengh and endurance from 

anterior deltoid mucsle to be performed as AROM without assisstance. The elbow joint also 

has to be fexible enough for the hand to successfully reach the opposite side shoulder. For 

testing the motion classifcation in unsupervised environment, this exercise is also required 

to be performed as AROM in the experiment.   

  

Figure 5-5. A demonstration of the shoulder touching exercise 

Figure 5-6. A demonstration of the wrist turn exercise 
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Wrist turn is the last exercise included in the experiment. Similar to the palm press 

exercise, it mainly targets the stiffness of the forearm muscle groups and it is usually 

performed as a self-assisted PROM or AAROM exercise. The exercise requires simply 

flipping the paretic hand on a flat surface with the assistance of the unaffected side hand. It 

is considered relatively simple as a PROM exercise and it can be completed by the patients 

from the early stages of recovery. 

The objective of this study is to investigate a robust and reliable method to classify the 

six movements when they are performed as AROM exercise during rehabilitation training 

sessions. The detailed methodology and experiment design is presented in the next section. 
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5.2 METHODOLOGY 

5.2.1 DATA SAMPLING 

The overview of the fuzzy kernel classification system is shown in Figure 5-7. The motion 

data were sampled at 400Hz using the accelerometer and gyroscope from an Xsens IMU 

module (MTi-300). The sensor node was attached to the patient’s forearm with the positive 

direction of the x-axis pointing the elbow as illustrated in Figure 4-3. The node was aligned 

with the centre line of the back of the hand and was mounted as close to the wrist joint as 

possible to ensure that it is not affected by any wrist movements. The raw data collected 

were then fed through a sequence of pre-processing procedures. A median filter was first 

applied to remove spikes in the signal caused by electrical noise or signal drop-off without 

distortion to the waveform. In practical situations, it needs to be taken into account that the 

patients may have different side of the body affected by stroke. Therefore, during the pre-

processing stage, data collected from the left hand impaired patients had the Y-axis of 

accelerometer data and X and Z-axis of gyroscope data inverted in order to rectify the 

difference. After the axis inversion, the 3-axis accelerometer reading was purified by 

removing the static offset caused by the gravity, and it was then integrated into velocity. 

However, the raw accelerometer measurement was kept in separated data sequences in order 

to retain the information of static acceleration. The 3-axis angular velocity measured by 

gyroscope was also integrated into orientation. Therefore, after the pre-processing, 9 data 

sequences (velocity, raw acceleration and orientation) were ready for the feature extraction 

process. In total, 63 features were used as shown in Table 5-1 and PCA process was applied 

after the first normalization process, which scales the input features in a range between 0 

and 1, in order to reduce the data complexity before the classifier training. As illustrated in 

Figure 5-7, the processed data was partitioned for classifier training and testing, and a ten-

fold cross-validation process was adopted to rotate the datasets. For classifier training, a 

fuzzy classifier which is based on unconstraint fuzzy membership function was constructed 

with the normalized principle components as input features. The number of principle 

components and the adjustable parameters in the classifier was determined by performing a 

grid search in the cross-validation process, where the value of the parameters were 

determined based on the classification performance.  
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Figure 5-7. Flow chart of the proposed motion classifier for post-stroke rehabilitation 

training 
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5.2.2 CLASSIFIER ARCHITECTURE 

The upper limb motions classification problem in post-stroke patients has been solved using 

the proposed model shown in Figure 5-8, which will be referred as Fuzzy Kernel Classifier 

(FKC) in this thesis. After data normalization, the classifier evaluates a label vector L vector, 

for any pattern x: 

L = [μ(1)(x), μ(2)(x), … μ(𝐾)(x)],                                          (14) 

where the kth element of L represents the fuzzy MF of the pattern to the kth class. We adopt 

the Winner-Takes-All (WTA) criterion for decision-making. Therefore, we chose the 

maximum value in the L vector, and we assign the final accordingly crisp label representing 

the estimated motion class for pattern x.  

 

Figure 5-8. The structure of the proposed FKC 
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 Before the classifier training, a pre-processing step of data normalization must be taken 

to merge all data feature space will be merged into a range between 0 and 1. Let M be the 

number of patterns of the dataset D = {𝑥1, 𝑥1, … , 𝑥𝑀} and N be the number of features. Each 

pattern of the dataset can be represented by a N-tuple of real numbers: 

𝑥𝑚 = [𝑥𝑚1, 𝑥𝑚2, … 𝑥𝑚𝑁],m = 1…M.                                   (15) 

Since the features are completely heterogeneous, the patterns are normalized within each 

column: 

𝑥𝑚𝑗 ←
𝑥𝑚𝑗−𝑏𝑗

𝑎𝑗−𝑏𝑗
, 𝑚 = 1…𝑀, 𝑗 = 1…𝑁,                                 (16) 

where 𝑎𝑗 = 𝑎𝑟𝑔 max
𝑚=1…𝑀

{𝑥𝑚𝑗}  𝑎𝑛𝑑 𝑏𝑗 = 𝑎𝑟𝑔 min
𝑚=1…𝑀

{𝑥𝑚𝑗}. 

Once the normalization is completed, the training set will need to be determined as a 

matrix where each row represents a vector of features to be used for the model learning. The 

proposed classifier establishes a set of fuzzy MFs to associate the patterns of each motion to 

the corresponding class. The used MFs, based on data geometrical representation and point-

to-polygon distance evaluation, is as presented in [237]. These MFs are constructed by taking 

regular polygons that cover all the patterns of each class and H kernel functions on both the 

vertices and the centroid of the corresponding polygon. The mathematical representation of 

the process is shown as follows: 

μ(𝑐𝑜𝑛𝑒)(𝑥) = max [0, 1 − 
𝛾

√𝑁
𝑑2(𝑥, 𝑐)] + ∑ max [0,1 −

𝛾

√𝑁
𝑑2(𝑥, 𝑣𝑖)]

𝐻
𝑖=1 ,        (17) 

where N is the number of dimensions/features N, 𝑑2(𝑥, 𝑐)is the point-to-centroid Euclidean 

distance, 𝑑2(𝑥, 𝑣𝑖) is the point-to-ith-vertex Euclidean distance and γ is the parameter that 

define the slope of the MF.  

 In the large amount of data analysis, if the number of dimensions increases, the 

identification of all the vertices of a polytope requires high computational costs. The convex 

hull of a set of points is the smallest convex set that contains the points [238] and it is 

considered as an effective solution for real-time polygon boundary evaluation in many 
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scientific disciplines [239-242]. As demonstrated in Figure 5-10, we used this mathematical 

algorithm for the evaluation of the vertices in which it is possible to place the linear function 

during the MFs construction [242].  The unconstrained convex shape of the MF can be 

clearly observed in Figure 5-11, where two MF examples, computed using 10 randomly 

selected points from the [0,1] space, are visualized in 2D planes. 

   The γ parameter represents the skewness of the MF: the greater the value of γ the faster 

the function goes to zero, as revealed in Figure 5-9.  The optimization of this parameter helps 

the correct estimation of the pattern membership to each class. An excessively small value 

might result in a critical class overlapping while a large value may also cause indetermination 

as the area covered by MFs will be too small and the degree of membership to all the known 

classes could be very close to zero. 

 

Figure 5-9. Fuzzy MF evaluation with the γ parameter varying 
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Figure 5-10. Convex Hull Example in 2-D and 3-D 

   Figure 5-11. Examples of the adopted MF visualized in 2-D plane with two different sets 

of randomly selected samples 
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TABLE 5-1 LIST OF FEATURES FOR FUZZY MOTION CLASSIFIER 

  

Feature type Feature names Feature description 

Mean 

MeanACCX, MeanACCY, 

MeanACCZ, 

MeanANGX, MeanANGY, 

MeanANGZ 

 Mean magnitude calculated for acceleration, 

angular position and velocity data sequence. 

Standard 

Deviation 

StdACCX, StdACCY, StdACCZ, 

StdANGX, StdANGY, StdANGZ, 

StdVELX, StdVELY, StdVELZ 

Standard deviation calculated for acceleration, 

angular position and velocity data sequence. 

Duration 
DurACCX, DurACCY, DurACCZ, 

DurANGX, DurANGY, DurANGZ, 

Effective duration calculated by counting the 

number of continues samples with absolute 

magnitude greater than the 20th percentile for each 

data sequence. 

Energy 

EneANGX, EneANGY, EneANGZ, 

EneANGX, EneANGY, EneANGZ, 

EneVELX, EneVELY, EneVELZ, 

Signal energy calculated by taking the sum of 

squared magnitude for each data sequence. 

Dominant 

Frequency 

Power 

PowACCX, PowACCY, 

PowACCZ, 

PowANGX, PowANGY, 

PowANGZ, 

PowVELX, PowVELY, PowVELZ, 

Power Spectral Density (PSD) at dominant 

frequency calculated for each data sequence after 

time-frequency domain conversion using Fast-

Fourier-Transform (FFT). 

Dominant 

Frequency 

FreqACCX, FreqACCY, 

FreqACCZ, 

FreqANGX, FreqANGY, 

FreqANGZ, 

FreqVELX, FreqVELY, 

FreqVELZ, 

Dominant frequency calculated by locating the 

peak PSD for each data sequence after FFT. 

Mean Power 

AvePowACCX, AvePowACCY, 

AvePowACCZ, AvePowANGX, 

AvePowANGY, AvePowANGZ, 

AvePowVELX, AvePowVELY, 

AvePowVELZ 

 

Average power of the power spectrum calculated 

for each data sequence after FFT. 
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5.2.3 EXPERIMENT PROTOCOL 

The experiments were conducted in collaboration with the Rehabilitation Medical Centre of 

the 2nd Hospital of Jiaxing in China. All the experiment procedures and data access were 

approved by the ethics committees of the hospital and the university. After the informed 

consent and selection process, 14 stroke patients from the centre, including 10 males and 4 

females with an average age of 60.3 (ranged from 32-78), participated in this research with 

a total of 531 motion data sets collected. The patient subjects were selected with a broad 

range of impairment level (Brunnstrom stage I-V) to test if the system was suitable for 

various stages of rehabilitation training. During the selection process, the participants were 

examined by experienced doctors and the ones with severe cognitive, perceptual or 

communication problem or any other health conditions that could have been not suitable for 

the experiment, have been carefully excluded. 

The motion sampling process utilized the six classical upper extremity rehabilitation 

exercises that are introduced in the beginning of the chapter: Bobath handshake, straight arm 

palm press, shoulder horizontal flexion and extension, forehead reaching with elbow, 

shoulder touching, and wrist turn.  The motions are selected as they are the most frequently 

performed exercises in the hospital which are familiar to the patients and they are also able 

to cover the different perspectives of patients’ motion impairments including multiple joint 

flexibility, muscle strength, and spasticity. The patients were asked to follow a video 

demonstration that repeats ten times for each exercise and no additional assistance was 

provided except for safety reasons. The participants were encouraged to attempt all six 

motions. However, due to the difference in impairment severity, most of the patients at low 

Brunnstrom stage (I-III) were not able to complete every exercise. Despite some motions 

being badly performed, every complete motion samples from all the 14 patients were 

included in the dataset to ensure the validity of the test result. However, six patients who had 

better performance during the exercise were selected to form a separate dataset in order to 

demonstrate the influence of motion quality of classification result.  
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5.3 RESULT AND DISCUSSION 

The classification accuracy is represented by the error rate as is the percentage of incorrectly 

classified motions evaluated in a test set which is never used during the training phase. The 

classification error is evaluated while changing the γ value in a practically computable range 

between 0.2 and 20 with a 0.2 step. Any further increase above the range will result in the 

separation of the kernel functions within the MF evaluation, and therefore it jeopardizes the 

performance of the classifier. The performance evaluation has the scope of investigating the 

behaviour of the proposed method with a consideration of both the most advantageous and 

the most disadvantageous situations. To realize that, ten different partitions of the whole 

dataset into training and test sets are considered, and the performance is evaluated in terms 

of the averaged accuracy on the ten different test sets for every value of γ. 

Two datasets with different groups of patients involved were used in the performance 

evaluation in order to demonstrate the influence of motion quality on classification accuracy:  

• Group with six patients (6P): The dataset consists of motion samples from 6 patients at 

higher Brunnstrom stages who can perform all the six motions with relatively high quality. 

The dataset includes 360 patterns with 60 in each of the six motion classes.  

• Group with 14 patients (14P): The dataset consists of motion samples from all 14 patients 

with significant variation in motion quality due to the difference in impairment severity. The 

dataset includes 531 patterns with different number of samples in each of the six motion 

classes as some patients at low Brunnstrom stages have difficulties in completing certain 

movements.  

The PCA analysis transforms all of the 63 features into principal components that are 

subsequently ranked based on their percentage of contribution in terms of describing data 

variance. Theoretically, the motion classifier can work with any number of principal 

components as the more components are included the more information from the original 

dataset will be covered.  However, most of the variance is explained by the first few principal 

components and by adding extra components, the required computation resources will rise 

significantly.  
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The error rate versus γ value plots with different number of patients and principal 

components are presented in Figure 5-12 and Figure 5-13. It can be seen that the error rate 

drops significantly while more information are recovered by adding extra principal 

component for both dataset.  A 0% error rate was finally achieved using seven principal 

components, which captures 72.3% of the variance, and when γ ∗=8.2.  In the case of 14P 

dataset, as shown in Figure 5-13, where the low-quality motion samples are introduced, some 

performance deterioration can be observed compared to 6P group although less than 1% 

error rate was also achieved with the same number of principal components. The γ value for 

the best result was slightly shifted to 10.2, which indicates that the shape of the MF boundary 

is optimized to be steeper to accommodate the additional class overlapping due to the 

increase of uncertainties. The detailed classification results for 14P dataset using γ ∗=10.2 

can be found in the confusion matrix listed in Table 5-2, which shows for each row the 

number of patterns of every real motion (M1, M2, . . . , M6) that are assigned to the estimated 

outcome. 

TABLE 5-2 CONFUSION MATRIX FOR 14 PATIENTS TEST 

 Estimated outcome 

A
ct

u
a
l 

v
a
lu

e 

 M1 M2 M3 M4 M5 M6 

M1 141 0 0 0 0 0 

M2 0 80 0 0 0 0 

M3 0 0 90 0 0 0 

M4 1 0 1 58 0 0 

M5 0 0 1 0 79 0 

M6 0 0 0 0 0 80 

 

A group of commonly used classification algorithms, trained in the MatlabTM  

software (version R2013a), have also been tested for comparison in order to test if superior 

classification performance in terms of error rate could be obtained using the proposed fuzzy 

approach. The ten-fold cross validation process was applied to all classifiers for parameter 

optimization and fair comparison. First of all, a neuro-fuzzy classifier whose parameters 
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were adapted using the scaled conjugate gradient method was tested [243].  The 

Classification and Regression Tree (CART) [244] as a classic approach was also 

implemented as well as the widely adopted Support Vector Machine (SVM) that was 

optimized with a Radial Basis Function (RBF) kernel and Sequential Minimal Optimization 

(SMO) method. Moreover, the probabilistic classifiers have also been involved in the 

comparison including the Linear Discriminant Analysis (LDA) and  Quadratic Discriminant 

Analysis (QDA) [245],  Naive Bayes classifier [246], and the feedforward Probabilistic 

Neural Network (PNN) [247]. The exact same datasets, preprocessing techniques, and 

experimental procedure were used for generating the results as listed in Table 5-3. It can be 

seen from the result that the proposed FKC has a distinct advantage over other popular 

methods in terms of accuracy for post-stroke motion classification application. SVM that 

has been widely adopted in motion tracking application can be treated as a benchmark [208], 

[211] and a near 1% error rate was achieved after tuning an RBF kernel SVM. Despite the 

high accuracy, the implementation of SVM in this application can be limited since the choice 

of kernel can dramatically affect the performance. The computation time, which multiplies 

rapidly as the size of the dataset increases, is another factor that hinders its implementation 

[205]. On the other hand, the proposed FKC requires only a single γ parameter to be tuned 

in the validation phase, and the computation time is relatively quicker especially in testing 

phase once the convex set is determined.  

It is also worth noting that as an instance-based learning algorithm, K-nearest neighbour 

(KNN) has been previously proposed to address the motion classification problem and it is 

also included in this experiment [13] [14]. Unlike many other pattern recognition techniques, 

an instance-based method retains the original input instances for classification without a 

learning process to generalized data into a set of inference rules. This type of learning 

strategy is generally referred as “lazy learning”, because most of the work is not started until 

the evaluation stage, when the query is made, and, as a result, the classification process can 

become too cumbersome and impractical for many applications. When it is combined 

template matching based approach for multinomial motion classification, the situation is 

worsened as the heavy querying process may be repeated multiple times to locate the optimal 

match. In order to be integrated into regular rehabilitation training, the classification process 
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must be computationally inexpensive to perform even with a large number of motion types. 

Therefore, despite the classification performance, instance-based learning is not considered 

as the most suitable candidate for this application. 

 

 

 

 

Figure 5-12. Six Patients classification. Error rate obtained by varying γ from 0.2 to 20 

with a step of 0.2. Different number of principal components used: a-2, b-3, c-4, d-5, e-6 

and f-7. 
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TABLE 5-3 ERROR RATE COMPARISON - MOTION CLASSIFICATION 

Algorithm 6 Patient 14 Patient 

Fuzzy Kernel Classifier 0.00 0.56 (± 0.64) 

Neuro-fuzzy Classifier 1.67 (± 1.32) 1.70 (± 1.10) 

Classification Tree (CART) 5.28 (± 2.31) 4.90 (± 1.84) 

Support Vector Machine (SVM) 1.32 (± 1.18) 1.11 (± 0.89) 

K-Nearest Neighbour (KNN) 1.32 (± 1.18) 0.56 (± 0.64) 

Linear Discriminant Analysis 1.67 (± 1.32) 8.35 (± 2.35) 

Quadratic Discriminant Analysis 0.56 (± 0.77) 1.32 (± 0.97) 

Naive Bayes 3.06 (± 1.78) 6.03 (± 2.02) 

Probabilistic Neural Network (PNN) 11.11 (± 3.25) 67.23 (± 4.00) 

              All the error rates are expressed in (%) with 95% confidence error bounds 

Figure 5-13.14 Patients classification: Error rate obtained by varying γ from 0.2 to 20 with 

a step of 0.2. Different number of principal components used: a-2, b-3, c-4, d-5, e-6 and f-

7. 
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5.4 SUMMARY 

In this chapter, a novel fuzzy kernel motion classifier that was specifically designed for 

autonomous stroke rehabilitation applications has been presented.  The system is capable of 

accurately identifying common rehabilitation exercise movements during a stroke patient’s 

routine training session using the kinetic data collected through an IMU attached to patient’s 

wrist. By implementing the proposed motion classifier in a TR training system, doctors will 

be able to track patient's training performance remotely without having to follow through 

the entire session. The optimized geometrically unconstrained MFs adopted in the classifier 

can effectively manage the motion class overlapping issue, which is one of the major 

obstacles in classification problems, especially when dealing with irregular motion samples 

performed by stroke patients with various degree of body functionality impairments. The 

proposed classifier has also undergone a series of validation experiments, and the results 

have demonstrated superior performances compared to other popular pattern recognition 

algorithms. When including no less than seven features as input, extracted by means of PCA, 

the fuzzy kernel motion classifier can achieve 0% error rate for low impairment level patient 

group and 0.56% for all patients.  
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Chapter 6  

IMPAIRMENT CLASSIFICATION USING 

SURFACE ELECTROMYOGRAPHY  

In addition to kinematic information, sEMG signal can also be sampled conveniently using 

wearable devices. Compared to IMU-based approach, sEMG has the advantage of being able 

to detect voluntary motion and intention from patients with high flaccidity in the early 

recovery stages.  The correlation between sEMG features and Brunnstrom stages of recovery 

and the possibility of adopting sEMG measurement as an alternative input for impairment 

level classification is investigated here. In this chapter, a novel fuzzy kernel based approach 

which automatically classifies stroke patients motor function impairment based on 

Brunnstrom scale using surface EMG signal is presented. The system is designed to be 

efficient and practical to implement in rehabilitation training settings. The validity of the 

proposed method has been tested with 93 surface EMG samples collected from 9 stroke 

patients. The participating patients motor function impairment levels are classified based on 

the Brunnstrom stage of recovery by an expert panel prior to the experiment and the 

automatic classification results are generated by the proposed system is compared with the 

expert’s judgement. Both 10 Fold and Leave-One-Out (LOO) cross validation method has 

been adopted to ensure repeatable results.  
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6.1 SEMG AND MOTOR RECOVERY 

In post-stroke rehabilitation, sEMG is considered as a popular method for detecting muscle 

activation and providing biofeedback to facilitate rehabilitation training. However, little is 

known regarding how muscle activation coordination patterns are related to the post-stroke 

functional recovery process. In a healthy neuromuscular system, skeletal muscles are 

voluntarily activated by the electrical messages that delivered from the brain through the 

upper and lower motor neuron, and finally arrives muscle fibres via the neuromuscular 

junction as illustrated in Figure 6-1 and the electrical activities that triggers muscle 

contraction can be monitored via EMG devices. However, after a stroke incident, brain 

tissues are damaged due to either the interruption of cerebral circulation, or the increased 

intracranial pressure and toxic effects from the released blood in the case of haemorrhagic 

stroke. Consequently, the neuromuscular pathway is impaired and, similar to other cortical, 

subcortical or spinal cord lesions, Upper Motor Neuron Syndrome (UMNS) can occur. 

Depending on the severity and location of the damage, the upper motor neuron lesion can 

lead to imbalanced excitatory and inhibitory input to alpha motor neurons and cause 

abnormal muscle excitability which results in significant limitation of patient’s motion 

including pathological changes to muscle strength, tone (hypotonia and hypertonia) and 

control. Many post-stroke body functional impairments are results of the abnormity of 

neuromuscular activity. For example, it is believed that the spasticity, which can be 

universally observed in stroke patients from the stage II or above of Brunnstrom stage of 

recovery, is a result of co-contraction of the flexors and extensors. These pathological 

electrical activities can be observed via EMG. However, how the post-stroke functional 

recovery process is related to the pathological EMG patterns is still debatable. In [248, 249], 

Buurke et al suggested that the functional gait improvement after stroke is the result of the 

compensatory strategies in muscle activation of the unaffected leg and other biomechanical 

rather than the changes in the muscle coordination of the impaired leg. In the research 

conducted by Tang et al. [250], no co-contraction was found in antagonistic muscles of the 

paretic limb after investigating 17 stroke patients’ sEMG recording of the elbow flexor 

muscle during isometric contraction. On the other hand, Hammond et al.[251] found that 

significant increment in co-contraction ratio of antagonist activity to agonist and antagonist 
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combined activity can be observed in the wrist flexor and extensor muscle of stroke patients 

using EMG.  

In this study, the sEMG signal measured from stroke patient from various recovery 

stages will be compared, and the relationship between the features of stroke patients’ sEMG 

patterns and their recovery progress will be investigated. An automatic Brunnstrom stage 

classifier is also developed to demonstrate how sEMG measurements can be adopted to aid 

post-stroke clinical assessments.  

  

 

  

Figure 6-1. An illustration of motor signal pathway 

(http://medical-dictionary.thefreedictionary.com/motor+neuron) 
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6.2 METHODOLOGY 

The high level view of the proposed motion classifier system is shown in Figure 6-2. The 

sEMG signal is first sampled from stroke patients’ lateral deltoid muscle during a repetitive 

rehabilitation training exercise using a single channel sEMG module at 3 kHz. The raw data 

is fed through a band-pass filter for pre-processing and ten different features from both time 

and frequency domain are then extracted for pattern recognition. A normalization step is 

performed before classifier training in order to accommodate every feature of the data space 

in the range between 0 and 1. Similar to the process flow introduced in chapter 5, the data 

are petition into different groups for classifier training and testing, and both LOO and ten-

fold cross-validation were implemented in this study to ensure the generalizability of the 

classifier. During each cross-validation test, the data are separated into three groups: the 

training, validation, and testing dataset. The classifier is first trained and validated using the 

training and validation set in order to optimize the internal parameter, and then the 

performance of the system is examined using the testing data.  
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Figure 6-2: System flow chart of the proposed sEMG based automatic 

impairment classification system 
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6.2.1 FUZZY MEMBERSHIP FUNCTION 

A flexible and computationally affordable MF is adopted in the proposed study to deal with 

complex shaped data clusters and to improve the classification performance. An MF is 

constructed by combining cone-shaped linear kernels evaluated for each pattern based on 

point-to-boundary distance. As a result, it does not have the constraints derived from 

particular geometrical structures such as hypercubes, hyperspheres, and regular polytopes. 

Instead, it adapts its shape based on the structure of data clusters. This approach was 

originally introduced by Liparulo et al. [237], in which the results have proven that the 

unconstrained MF is effective and feasible when dealing with complex clustering tasks. In 

this approach, each linear kernel is associated with an MF represented by a number L of 

points corresponding to the patterns belonging to that class. The evaluation of the MF is 

inversely related to the distance between pattern and cluster boundaries. This method 

exploits the superposition of an appropriate number of functions for building the MF of each 

cluster. Let L × N be a matrix V, where N is the number of data features: 

V = [

𝑣1
⋮
𝑣𝐿
] = [

𝑣11 ⋯ 𝑣1𝑁
⋮ ⋱ ⋮
𝑣𝐿1 ⋯ 𝑣𝐿𝑁

].                                       (18) 

Let x be the pattern whose MF to the class must be computed, the MF can be represented as: 

𝜇(X) = ∑ max [0,1 −
𝛾

𝛿
𝑑2(𝑥, 𝑣𝑖)] ,

𝐿
𝑖=1                                      (19) 

where 𝑑2(𝑥, 𝑣𝑖), i=1…L, is the pattern-to-ith-point Euclidean distance and 𝛿 is the maximum 

distance that can occur between the two patterns. This value can be determined simply based 

on the total number of features using the following expression: 

δ = √𝑁.                                                (20) 

An example of cone-based MF is illustrated in Figure 6-1. It is based on a toy example 

with a single class composed of 12 randomly generated patterns. The graphical 

representation of the MF is obtained by taking the summation of the 12 overlapped kernel 

functions constructed over each pattern within the class. The MF is normalized within a 

range from 0 to 1. 
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Figure 6-1: MF computation for a simple 2-D example, cone-shaped kernels are placed at 

each point within the class 

6.2.2 PROPOSED FUZZY CLASSIFIER 

The design of the proposed fuzzy classifier is presented in Figure 6-2. After acquiring the 

normalized input dataset, a label vector L vector for any pattern x, is evaluated as: 

L = [μ1(x), μ2(x),… , μ𝐾(x)].                                          (21) 

where the kth element of L represents the fuzzy MF of the pattern to the kth class. The 

fuzzified input is then directly passed to a Winner-Takes-All (WTA) process for decision-

making and the corresponding crisp label of the largest value in the L vector will be chosen 

as classification for pattern x. 

The original data pool is first divided into training and validation sets for determining 

the optimal parameters for the model learning. By applying the aforementioned method in 

equation (19), the proposed classifier can then establish a set of fuzzy MFs to classify input 

patterns to the corresponding Brunnstrom level. The γ is the only parameter that is required 

to be optimized in the training phase. It defines the skewness of the MF: the greater the value 

of γ, the faster the function falls to zero as the distance increases, and vice versa, as revealed 

in Figure 6-3. The optimization process is critical for achieving the best estimation of the 

clusters. An excessively small value might result in unwanted class overlapping while a large 

value may cause indeterminable clusters as the area covered by MFs will be insufficient and 

the degree of membership to all the known classes could be very close to zero. 
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Figure 6-2: The structure of the proposed sEMG Fuzzy Classifier 

 

Figure 6-3: Fuzzy MF evaluation with various γ values 
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6.2.3 EXPERIMENT PROTOCOL 

In order to examine the performance of the proposed system, an experiment, with data being 

sampled from actual stroke patients, has been conducted. The sEMG data samples are 

collected from the stroke patients in the Jiaxing 2nd hospital rehabilitation centre, Zhejiang, 

China. The data access and experiments have been approved by the ethic committees of 

RMIT University and Jiaxing 2nd hospital. Nine stroke patients (three males, six females, 

mean age 67.2±29.2) with various level of body function impairment (Brunnstrom stage II 

to IV) have participated the experiment. The patient subjects were verified to be within the 

phase of stroke recovery using Computer Tomography (CT) or Magnetic Resonance 

Imaging (MRI). In order to meet safety and ethics requirements, the following inclusion 

criteria were imposed: 

1. No hemodynamic instability; 

2. No severe cognitive impairments; 

3. No dementia; 

4. No major post-stroke complication; 

5. Able and willing to give consent. 

 Although sEMG based approach can effectively detect voluntary motion intention for 

stroke patients even at very early stage of recovery, no stage I patients were involved in the 

experiment due to unstable condition and high risk of complications. All patient subjects 

were examined by an expert panel for Brunnstrom stages prior to the sampling experiment. 

The panel members were selected from rehabilitation doctors who have: 

1. Extensive clinical experience with stroke patients and stroke rehabilitation; 

2. Experience in conducting stroke rehabilitation related medical research. 

Overall, 93 sEMG data have been collected using a Noraxon TeleMyo DTS 2400 system 

with Ag/AgCl surface electrodes and a sampling rate of 3kHz. An arm abduction and 

adduction movement were used during the sampling experiment, and the sEMG data were 
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sampled from middle deltoid muscle. The movement starts with both arms being relaxed at 

side of the body with fingers pointing down naturally. The patient then smoothly raises the 

arm which is sampled sideways to reach the maximum angle possible before slowly lowering 

it back to the starting position and getting ready for the next repetition. At the beginning of 

the data sampling process, the experiment procedure and involved exercise movements are 

first explained to the participating patients. Enough time was given to the patients for 

practice and rest before the actual sEMG sampling. The surface electrodes were placed on 

the muscle belly with an interval of 2cm. The reference electrode is placed at a spot where 

no muscle activation can be detected during the movement. The skin surface was prepared 

with gauze and alcohol to remove dead skins and also to clean the excess oils before 

electrodes placement. During each recording, no more than five repetitions of the movement 

are performed by each patient to reduce the influence of muscle fatigue which may 

significantly affect the sample quality for early recovery stage or elderly patients. The 

sampling process was repeated between 2 to 3 times for each patient with new electrodes 

and re-initialized setup which gives the patients enough time to rest and also introduces 

variability such as the change in skin impedance. The sEMG data were collected from 

patients’ limbs on both the affected and the healthy side of the body for comparison.  

6.2.4 FEATURE EXTRACTION 

The surface EMG signals sampled at 3kHz were first fed through a 10th order digital ellipse 

bandpass filter with a passband from 20 to 500Hz and 30dB attenuation on stop-bands for 

noise reduction. The filtered samples were also rectified for activation detection using Root-

Mean-Square (RMS) method with a sliding Hamming window as presented below. 

Let 𝑥 be the filtered EMG input signal and 𝑠 be the rectified output signal. The 

rectification process can be written as: 

𝑠(n) = √
1

𝐿
∑ (𝑥(𝑘)

𝑛+𝐿−1

𝑘=𝑛
𝑤(𝑘))2, 1 ≤ n ≤ N                                (22) 

where N is the number of windowed segments, L is the window length, w(k) is the 

Hamming window function defined as:    
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w(k) = 0.54 − 0.46 cos (2π
𝑘

𝑀−1
) , 1 ≤ 𝑘 < 𝐿                               (23) 

The muscle activations were then automatically localized by setting a threshold in 

relation to signal magnitude. The segmentation process of a sEMG signal sampled from a 

stage-3 patient is illustrated in Figure 6-4. It can be seen that rectangular windows are applied 

over the detected movement onsets. The window length is calculated to be 20% larger than 

the activation period determined by an amplitude threshold to cover the complete movement. 

The activation periods which are too close to the beginning or the end of the sample 

sequences are disposed to avoid the inclusion of unintended or incomplete movements.  

 

Figure 6-4: the segmentation of the sEMG signal sampled from a stage 3 patients.  The 

high-frequency blue waveform in the background is the original filtered sEMG signal. The 

slow varying green thin line is the rectified signal obtained using a 2048 points Hamming 

window. The horizontal dash line indicates the amplitude threshold for activation detection 

which is set to be 40% of the signal median. The red rectangular are the windows for signal 

segmentation. 

Ten features on both time and frequency domain were extracted from the segmented 

sEMG samples before classification. The details of each feature are presented below: 
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 Maximum Amplitude: The maximum amplitude reached in the rectified signal. 

 Mean Amplitude: The mean amplitude of the rectified signal. 

 Activation duration: The length of data segment which represents the duration of 

the muscle activation as illustrated in fig? 

 Signal Energy: The energy estimated using Teager Kaiser Energy Operator (TKEO) 

during muscle activation. The TKEO in discrete form is given in [252, 253] as: 

ψ[𝑥(𝑛)] = 𝑥(𝑛)2 − 𝑥(𝑛 + 1)𝑥(𝑛 − 1)                                     (24) 

where x(n) is the sEMG data sequence. The signal energy can then be calculated as: 

ENE = ∑ ψ[𝑥(𝑛)]
𝑁

𝑛=1
                                                    (25) 

 Maximum changing rate: the peak value in the first derivative of the rectified 

sEMG signal 

 The 2nd and 3rd Linear Prediction Coefficient (LPC): The 2nd and 3rd LPC are 

computed by constructing a 2nd order forward linear predictor of the sEMG sample 

signal and minimizing the prediction error with least-squares method using the ‘lpc’ 

function in MATLAB. 

 Average Zero Crossing (ZC) rate: the ZC rate is calculated by counting the zero 

crossing events of the original sEMG signal within a window which is defined as: 

C(n) =
1

𝐿
∑ 𝑠𝑔𝑛(𝑥(𝑘)𝑥(𝑘 + 1))𝑛+𝐿−1
𝑘=𝑛                                       (26) 

where L is the window length and x is the original sEMG signal. The average ZC 

rate is computed as: 

AZC =
1

𝑁
∑ 𝐶(𝑛)𝑁
𝑛=1                                                     (27) 

 Mean Power Frequency (MPF): The MPF is the centroid frequency of the signal 

power spectrum defined as: 

MPF =
∑ 𝑃(𝑛)𝑓(𝑛)

𝑁

𝑛=1

∑ 𝑃(𝑛)𝑁
𝑛=1

                                                     (28) 



135 

 

 

 

 

Where P is the power spectrum estimated using Welch’s modified periodogram 

method and f is the normalized frequency vector. 

 Median Frequency: Median Frequency is the frequency which divides the sEMG 

power spectrum into two equal portions with same accumulated power. It can be 

defined as: 

∑ 𝑃(𝑛) =𝑀𝐹
𝑛=1 ∑ 𝑃(𝑛) =

1

2
𝑁
𝑛=𝑀𝐹 ∑ 𝑃(𝑛)𝑁

𝑛=1                                (29)   
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6.3 RESULT AND DISCUSSION 

The dataset used is a M × N matrix, where M = 93 is the number of the motions performed 

by 9 patients with various level of body function impairment (Brunnstrom stage II to IV) 

and N = 10 is the number of data features. Table 6-1 shows the labels used as output in the 

classification stage.  

The extracted features are first tested against Brunnstrom stages of recovery to 

investigate the correlation between sEMG signal attributes and the progression of post-stroke 

recovery. Different evaluation methods including InfoGain, ReliefF and Pearson correlation 

coefficient are adopted in order to analyse the contribution, correlation strength and 

statistical significance of the selected features. InfoGain measures the contribution of each 

feature in terms of the information gain with respect to the labels. It is evaluated by 

subtracting joint entropy of the feature and class from the entropy of the feature. On the other 

hand, ReliefF [254] can examine how relevant the features are to the classification problem 

by implementing an instance based nearest neighbour search. The labels of randomly 

selected samples are compared to the samples nearby and a large number of neighbours with 

different labels on a single axis can indicate an irrelevant feature. The Pearson correlation 

coefficients [255] and the p-values are also calculated to demonstrate the strength and the 

significance of the correlation between the features and the Brunnstrom stages. The complete 

result is shown in Table 6-1. InfoGain and ReliefF are implemented using WEKA data 

mining workbench and the result listed is the ranker output. 

By comparing the results, it can be seen that most of features are strongly correlated to 

the Brunnstrom stages especially amplitude, changing rate and frequency domain features. 

Some of the results are visualized in Figure 6-5 and Figure 6-6. Mean amplitude and Median 

frequency both exhibit strong correlation with the recovery progress and contribute 

significant information gain which can benefit the classification performance. As depicted 

in Figure 6-5, the sEMG samples from paretic and non-paretic group can almost be separated 

using only the two features and the overlapping is relatively mild. It can be observed that the 

signal sampled from unaffected limb usually has higher median frequency and stronger 

average amplitude. The strong linear correlation between median frequency and Brunnstrom 
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stages is also demonstrated in Figure 6-6. As a result, the classification of stroke impaired 

and unaffected samples as performed in [256], [257] can be achieved with sEMG features 

without too much difficulty. However, the automatic classification of stroke patients at 

different impairment level or recovery stage has significantly greater value than the binary 

classification of healthy and stroke impaired subjects which is obvious and unnecessary in 

most clinical settings. Brunnstrom stage classification is comparatively more challenging 

and it cannot be achieved with individual features due to the noticeable class overlapping 

presented within the recovering stages. Therefore, in order to achieve class separation, 

multiple features must be combined using more sophisticated classification method. 

 

 

TABLE 6-1 SEMG FEATURE COMPARISON 

Feature InfoGain ReliefF Pearson r Significance 

Maximum Amplitude 1.017 0.130 0.71 P<0.001 

Mean Amplitude 1.201 0.149 0.73 P<0.001 

Activation Duration 0.286 0.036 -0.36 P<0.001 

Signal Energy 1.231 0.042 0.57 P<0.001 

Maximum Changing Rate 0.677 0.117 0.73 P<0.001 

2nd LPC 0.548 0.076 0.32 P<0.001 

3rd LPC 0.228 0.086 -0.03 P=0.388 

Average Zero Crossing Rate 0.386 0.047 0.50 P<0.001 

MPF 0.652 0.091 0.60 P<0.001 

Median Frequency 0.641 0.091 0.64 P<0.001 
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Figure 6-5: Comparison of sEMG samples from paretic and non-paretic side 

 

Figure 6-6: Correlation between Median Frequency and Brunnstrom stages. The linear 

regression is plotted using the red line. 
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      Figure 6-7 demonstrates how the proposed fuzzy kernel classifier is tuned with 

cross-validation to realize accurate Brunnstrom stage classification.  The learning phase has 

been performed by evaluating the classification error while changing the value in a 

computable range between 2 and 10 with a step of 0.1 as depicted in the graph. Therefore, 

the γ∗chosen for the testing phase is the minimum value in correspondence of the best error 

rate that is calculated from a suited validation set. Both 10-Fold and LOO cross-validation, 

have been performed to ensure the generalizability of the classifier. The performance is 

evaluated as the averaged accuracy, which is the number of correctly classified data divided 

by the total number of data in percentage, calculated for each data partition. 

In order to demonstrate that the proposed method can obtain smaller error rate, different 

classification algorithms, trained in the Matlab™ software (version R2013a), have also been 

tested for comparison. They are described as follows: 

 A Fuzzy Inference System (FIS) with both Mamdani [258] and Sugeno type [221] 

trained using the Subtractive Clustering (SUBCL) method [259] and a Neuro-Fuzzy 

Classifier whose parameters are adapted using the scaled conjugate gradient method 

[243] are included as fuzzy approaches. 

 Support Vector Machine (SVM) [206] and Classification And Regression Tree 

(CART) [244] are included as hard/crisp approaches. 

 Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA) 

[245], Naive Bayes classifier [246] and the feedforward Probabilistic Neural 

Network (PNN) [247] are included as probabilistic classifiers. 
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TABLE 6-2 CLASSIFIER PERFORMANCE COMPAIRSON 

Algorithm Error rate  for 10-Fold Test Error rate for LOO 

Proposed Fuzzy Kernel Classifier 7.53 (± 5.36) 8.60 (± 5.70) 

FIS Classifier (Sugeno) 9.68 (± 6.01) 11.83 (± 6.56) 

FIS Classifier (Mamdani) 9.68 (± 6.01) 11.83 (± 6.56) 

Neuro-Fuzzy Classifier 11.83 (± 6.56) 17.20 (± 7.67) 

LDA 30.11 (± 9.32) 31.18 (± 9.41) 

QDA 17.20 (± 7.67) 19.35 (± 8.03) 

Naive Bayes Classifier 24.73 (± 8.77) 23.66 (± 8.64) 

SVM 24.73 (± 8.77) 22.58 (± 8.50) 

CART 16.13 (± 7.48) 15.05 (± 7.27) 

PNN 45.16 (± 10.11) 46.24 (± 10.13) 

      All the error rates are expressed in (%) with 95% confidence error bounds 

In Table 6-2, the final results over the test set are shown. As expected, all the tested 

fuzzy methods achieve better performance compared to the others and the proposed fuzzy 

classifier attains the minimum error rate and the best performance in terms of accuracy. The 

detailed performance result of the proposed fuzzy classifier using 10-Fold cross validation 

is presented in Table 6-3 in the form of a confusion matrix. High single class sensitivity can 

be observed in stage II, III, and the healthy group. The classification of impairment level 

based on clinical scales using solely the sEMG is still a difficult task. Features that are 

targeted in Brunnstrom classification such as synergy pattern development can be hard to 

capture on single channel sEMG and the relatively small sample number for stage IV group 

may also have hindered the performance. Nevertheless, the performance of the proposed 

approach is highly competitive to many current state-of-art inertia or optical measurement 

based classification methods [166, 198, 235, 260] and it proves that, alone with kinematic 

and physiological inputs, single channel sEMG sampled during the dynamic exercise can 

also be treated as valid evidence for post-stroke impairment level classification. 
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TABLE 6-3 CONFUSION MATRIX FOR THE PROPOSED CLASSIFIER 

   Classified Outcome 
A

ct
u

a
l 

V
a
lu

e 

 Stage II Stage III Stage IV Healthy Total Accuracy 

Stage II 17 0 1 0 18 94.44% 

Stage III 0 30 2 0 32 93.75% 

Stage IV 3 0 11 0 14 78.57% 

Healthy 0 0 1 28 29 96.55% 

 Total 20 30 14 28  92.47% 

 

 

      Figure 6-7: An example of the optimization process of  γ∗ during the validation phase. 
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6.4 SUMMARY 

In this chapter, a novel fuzzy approach for automatic Brunnstrom classification using sEMG 

has been proposed. After investigating the sEMG data on time and frequency domain, a 

strong correlation between the extracted features and the stroke patients' recovery progress 

has been be observed. By implementing specifically designed fuzzy kernel classifier, the 

system is capable of automatically performing objective and reliable assessment of stroke 

patients’ motor impairment and produces highly accurate classification outcomes that agree 

with human expert's decision as demonstrated in the experimental results. The automatic 

classification system can be integrated into post-stroke rehabilitation training programs to 

reduce the human effort involved in the repetitive clinical assessment especially in a training 

environment with reduced supervision, such as committee or home-based rehabilitation 

programs. The objective process can also serve as a supplementary evidence for human 

observation based assessment and as a help to create unified evaluation standards for more 

reliable data comparison across different institutions.  
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Chapter 7  

CONCLUSION AND FUTURE WORKS 

7.1 OVERVIEW 

The primary objective of this investigation is to research on novel wearable sensor-based 

approaches that can offer automatic assessment and supervision in post-stroke rehabilitation 

training applications. The research presented in this thesis mainly focuses on addressing the 

existing issues of the conventional rehabilitation systems: 

1. Subjectiveness: The conventional manual assessment methods rely heavily on 

the experience of the assessor and the evaluation standards can differ 

significantly among different institutes or regions. As a result, the reliability and 

consistency of the assessment result are compromised. 

2. Insensitivity: Many popular clinical assessment scales are based on nominal or 

ordinal measurement which is not able to capture the relative degree of difference 

between two grades.  Therefore, such systems cannot be used to detect minor 

progressive changes of patient’s body function during rehabilitation program. 

3. Inefficiency: Due to the dependencies of human supervision, conventional 

rehabilitation programs can be very labour intensive. This disadvantage not only 

increases the amount of financial cost and occupied resources but also hinders 

the development of home and community-based rehabilitation systems.  

In order to optimize the efficiency and effectiveness, different combination of 

techniques was implemented to provide solutions for various tasks in rehabilitation programs. 

While taking unsupervised rehabilitation settings into consideration, the solutions are 

developed to be inexpensive to perform both financially and computationally. The highlights 

of the research findings will be summarized in the next section.   
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7.2 MAJOR RESEARCH FINDINGS 

The study discussed in this thesis can be summarized into the following four major findings: 

 Stroke patients’ impairment level measured in Brunnstrom stages of recovery can 

be automatically classified using kinematic data that are collected by wearable 

sensors. 

As discussed in Chapter 3, a fuzzy inference system based automatic Brunnstrom stage 

classification method was developed for upper-limb rehabilitation. The classifier utilizes 

the patient motion data sampled during rehabilitation training using two wireless IMUs. 

The experimental results have demonstrated that the system can produce quantified 

results which match rehabilitation experts’ evaluation with high accuracy. 

 Stoke patient’s limb mobility can be assessed quantitatively and automatically 

during rehabilitation training using a single-index metric system 

As discussed in Chapter 4, a novel single index based metric system for limb mobility 

evaluation during post-stroke rehabilitation training was developed. The mobility index 

generated can serve as an intuitive feedback to facilitate rehabilitation training and also 

provide objective and reliable evidence for setting individualized training prescription. 

The strong correlation with Brunnstrom stage of recovery and high accuracy when used 

as classifier input have both indicated its potential as a unified scale for body function 

impairment level assessment.  

 The post-stroke rehabilitation training session can be supervised using an 

automatic motion classifier system which can accurately differentiate rehabilitation 

training motions 

As discussed in Chapter 5, a fuzzy kernel motion classifier for unsupervised post-stroke 

rehabilitation training was developed. The system utilizes only single IMU input and is 

capable of classifying predefined upper-limb rehabilitation training movements 

accurately and efficiently even when the movements were performed poorly or 

inconsistently.  The experimental results have demonstrated that the proposed system 
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can provide reliable results to facilitate other unsupervised training features such as 

automatic impairment classification and limb mobility assessment. 

 The patient’s motor impairment level can also be evaluated by using a single 

channel sEMG that is sampled during rehabilitation training exercise. 

As discussed in Chapter 6, the relationship between the single channel sEMG signal 

sampled from middle deltoid muscle during shoulder training exercise and stroke 

patient’s impairment level measured in Brunnstrom stage of recovery was investigated. 

In order to automatically evaluate stroke-induced motor impairment, various sEMG 

features in both time and frequency domain had been studied and a specifically designed 

fuzzy kernel classifier was developed to tackle the challenges in discriminating data 

classes with complex separating surfaces. The experimental results have demonstrated 

that the sEMG based method can produce very competitive classification outcome that 

can facilitate unsupervised rehabilitation training.  

The significance of the work presented in this thesis can be summarised as follow: 

 The quantitative mobility evaluation system can realize unified impairment level 

classification by providing reliable, consistent and quantitative evaluation of stroke 

patient’s limb mobility. 

 The automatic impairment classification process can significantly reduce the human 

efforts involved in repetitive clinical assessments. 

  The mobility index proposed for limb-mobility assessment is more sensitive to fine 

changes of motor functions during post-stroke recovery. 

 The assessment process is designed to be implemented with routine rehabilitation 

training as the result can be obtained while patient performing general exercise 

movements. 

 The computerized process and the quantitative output can be easily integrated with 

health informatics systems to facilitate customized training programs or 

rehabilitation medicine research 
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 The low cost, low operation complexity design is suitable for home or community-

based rehabilitation training programs 

 The motion assessment feature can provide real-time feedback based on patient's 

motion quality during a training session which encourages patients to dedicate more 

effort and thus achieve better training outcome. 
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7.3 FUTURE WORK  

The primary objective of this research is to utilize the advantages of wearable sensor 

technology and to search for a solution to replace the conventional inefficient, insensitive 

and subjective clinical assessment process used in the current rehabilitation systems. To 

reach the answer, a number of challenges must be overcome first. In this section, the path of 

investigation throughout the candidate’s Ph.D research is reviewed and the possible future 

development is then discussed.     

First of all, before researching for a new assessment approach, an established clinical 

scale must be chosen as a benchmark to ensure that the concurrent validity of any new system 

can be demonstrated by showing its accordance with the widely recognised standard. The 

conventional clinical scales are created to suit experience-based human decision maker 

rather than objective classification machines. Therefore, the selection process must consider 

if the scale matches the characteristic of automatic assessment system in addition to the 

reliability and popularity. In wearable sensor based systems, the subjectivity and the 

variability of the user are already minimized, and the high efficiency and quantitative 

property should be fully utilized to improve assessment frequency and sensitivity. Popular 

scales such as BI is known for high internal reliability and repeatability. However, it can be 

reliably assessed by taking quick query and it is designed to examine patients’ independence 

and their ability to perform ADL rather than motor function. Therefore, wearable sensor 

based systems do not have significant advantage over human observer. The comprehensive 

scales such as ICF and NIHSS both includes multiple items for motor impairment assessment. 

However, these scales are developed with maximized reliability to be used in multi-centre 

clinical trials and thus only minimum number of grades for each item is allowed: an approach 

to avoid interrater variability and human errors at the cost of sensitivity. In the research 

presented in this thesis, Brunnstrom Stage of Recovery, a six-stage scale which models the 

sequential development of post-stroke motor function recovery, is chosen as the benchmark. 

The advantage of choosing Brunnstrom approach is that it puts an emphasis on limb mobility 

features that can be conveniently captured using IMU or sEMG based wearable sensors. The 

multi-grade structure also provides relatively high sensitivity, and the clearly defined 
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assessment criteria can benefit from the quantitative assessment supported by the wearable 

sensors.  

Compared to the other generic body function scales, Brunnstrom stages of recovery is 

specialised in motor function impairment evaluation and specific motor function 

characteristics are clearly defined for each stages. Therefore, the design of the classification 

system must follow these features in order to ensure the validity and the efficiency. A two-

IMU design that samples the upper arm and the forearm movement separately was proposed 

for the aforementioned reason. In addition to capturing the magnitude and speed, the two 

sensor design has the advantage of being able to record the elbow joint flexibility and the 

ratio of synergy motions which are key features defined in Brunnstrom approach. The 

expected result was validated in the PCA test as the obvious trends of motor function 

recovery can be observed on the principal components. The features representing motion 

magnitude and synergy movement are captured by the 1st and 2nd principal components 

respectively. A transition pattern can also be observed where the samples with the less 

synergy movement and averaged motion magnitude usually have a higher Brunnstrom stage. 

By implementing ANFIS, the pattern is formulated into fuzzy if-then rules and applied as 

Brunnstrom stage classifier which its validity was further proven in a LOO cross-validation 

test. 

By successfully creating an automatic system for Brunnstrom stage classification, it has 

been proven that the idea of using motion sensing wearable sensor to assess upper-limb 

motor function is valid. However, as mentioned previously, the conventional clinical scales 

are subject to limitations of human observation based evaluation method. Despite having 

more variability than other scales, Brunnstrom stages are still not sensitive enough to track 

small development of motor function taken place in daily rehabilitation training. To fully 

extend the advantage of quantitative assessment and enables highly sensitive feedback which 

can support rehabilitation training and decision-making, a single-index based metric system 

for limb mobility assessment is proposed. The new index is normalized to a range of 0 to 1 

where 1 indicates perfect motion quality and it provides an intuitive representation of 

patient’s motion quality and mobility limitation. While the proposed index can reflect much 
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more detailed variations in limb motor function than conventional scales, the validity of the 

index is guaranteed by its strong correlation with Brunnstrom stages of recovery. 

The proposed Brunnstrom stage classifier and limb mobility metric system are both 

automatic processes which are designed to be implemented with minimal human supervision. 

However, the correct operation of both design require the motion samples of a specific pre-

defined movement and this requirement cannot be guaranteed in an unsupervised 

environment as random motions from the user can appear during the sampling time. 

Therefore, to make the first two solutions work, a reliable patient motion identification 

system is required. Compared to clinical assessment, the patient monitoring applications 

possess a different set of requirements including much higher classification accuracy and 

faster processing speed. In chapter 5, a fuzzy classifier based approach was proposed and it 

was capable of identifying six different predefined exercise movement with near perfect 

accuracy using the measurement from only a single IMU.       

In summary, the intention of this research is to explore the possibility of using current 

wearable sensor technology to transform the conventional form of clinical assessment. The 

outcome of the investigations suggest that wearable technology can contribute significantly 

to TR systems and rehabilitation programs in general by enabling the automatic and 

objective clinical assessment and the unobtrusive patient supervision. It is expected in the 

future that by introducing the automatic approaches, the post-stroke motor function 

assessments can be made more accessible and efficient so that more patients can benefit from 

highly individualized rehabilitation interventions including those who train at home or 

community rehabilitation centre. The new assessment process can also enable a new 

generation of clinical scale which has unified assessment criteria to ensure high reliability 

for data comparison and multi-centre research without having to reduce the sensitivity, 

which is important to track short term progress and optimize intervention.  

A number of ideas on how future studies can be conducted based on the research findings 

acquired from this research are presented below: 
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 Developing automatic impairment classification techniques for various popular 

clinical scales. 

A large number of stroke assessment scales are currently used around the globe. 

Depending on the local regulation and the focused area, different assessment scales may 

be preferred by different institutions and multiple scales may be used at the same time. 

Therefore, it can be beneficial to modify the current systems to comply with various 

assessment scales and standards. 

 Developing automatic impairment classification techniques for lower-limb 

exercise and gait analysis. 

The lower limb functioning also has considerable influence on stroke patient’s life 

quality. While different feature extraction strategies may be required, similar design and 

experiment approaches may be implemented to develop the impairment classification 

and limb mobility assessment systems for lower body movements.    

 

 Designing a comprehensive post-stroke telerehabilitation system that integrates 

automatic assessment and supervision using multichannel hybrid inputs. 

By combining the techniques developed in this study, an unsupervised post-rehabilitation 

training system can be developed to support home or community-based rehabilitation 

training. Multi-channel kinematic and physiological signals can be integrated to further 

improve the classification accuracy. For clinical implementation, an information 

management system and integrated user interface will also be required. The objective of 

the study will be testing the efficacy of the system against the conventional training 

systems in a long-term clinical evaluation. 
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