798 research outputs found

    Gravito-magnetic instabilities in anisotropically expanding fluids

    Full text link
    Gravitational instabilities in a magnetized Friedman - Robertson - Walker (FRW) Universe, in which the magnetic field was assumed to be too weak to destroy the isotropy of the model, are known and have been studied in the past. Accordingly, it became evident that the external magnetic field disfavors the perturbations' growth, suppressing the corresponding rate by an amount proportional to its strength. However, the spatial isotropy of the FRW Universe is not compatible with the presence of large-scale magnetic fields. Therefore, in this article we use the general-relativistic (GR) version of the (linearized) perturbed magnetohydrodynamic equations with and without resistivity, to discuss a generalized Jeans criterion and the potential formation of density condensations within a class of homogeneous and anisotropically expanding, self-gravitating, magnetized fluids in curved space-time. We find that, for a wide variety of anisotropic cosmological models, gravito-magnetic instabilities can lead to sub-horizonal, magnetized condensations. In the non-resistive case, the power spectrum of the unstable cosmological perturbations suggests that most of the power is concentrated on large scales (small k), very close to the horizon. On the other hand, in a resistive medium, the critical wave-numbers so obtained, exhibit a delicate dependence on resistivity, resulting in the reduction of the corresponding Jeans lengths to smaller scales (well bellow the horizon) than the non-resistive ones, while increasing the range of cosmological models which admit such an instability.Comment: 10 pages RevTex, 4 figures, accepted for publication in the International Journal of Modern Physics

    High-energy neutrino conversion into electron-W pair in magnetic field and its contribution to neutrino absorption

    Get PDF
    We calculate the conversion rate of high-energy neutrinos propagating in constant magnetic field into an electron-W pair (nu -> W + e) from the imaginary part of the neutrino self-energy. Using the exact propagators in constant magnetic field, the neutrino self-energy has been calculated to all order in the field within the Weinberg-Salam model. We obtain a compact formula in the limit of B << Bcr = m^2/e. We find that above the process threshold Eth \~ 2.2 10^16 (Bcr / B) eV this contribution to the absorption of neutrinos yields an asymptotic absorption length ~ 1.1 (Bcr / B)^2 (10^{16} eV / E) meters.Comment: 10 pages in RevTeX, 2 figures; published version: two typos corrected, one reference adde

    Transport coefficients of multi-particle collision algorithms with velocity-dependent collision rules

    Full text link
    Detailed calculations of the transport coefficients of a recently introduced particle-based model for fluid dynamics with a non-ideal equation of state are presented. Excluded volume interactions are modeled by means of biased stochastic multiparticle collisions which depend on the local velocities and densities. Momentum and energy are exactly conserved locally. A general scheme to derive transport coefficients for such biased, velocity dependent collision rules is developed. Analytic expressions for the self-diffusion coefficient and the shear viscosity are obtained, and very good agreement is found with numerical results at small and large mean free paths. The viscosity turns out to be proportional to the square root of temperature, as in a real gas. In addition, the theoretical framework is applied to a two-component version of the model, and expressions for the viscosity and the difference in diffusion of the two species are given.Comment: 31 pages, 8 figures, accepted by J. Phys. Cond. Matte
    corecore