116 research outputs found

    Hopfield models as nondeterministic finite-state machines

    Get PDF
    The use of neural networks for integrated linguistic analysis may be profitable. This paper presents the first results of our research on that subject: a Hopfield model for syntactical analysis. We construct a neural network as an implementation of a bounded push-down automaton, which can accept context-free languages with limited center-embedding. The network's behavior can be predicted a priori, so the presented theory can be tested. The operation of the network as an implementation of the acceptor is provably correct. Furthermore we found a solution to the problem of spurious states in Hopfield models: we use them as dynamically constructed representations of sets of states of the implemented acceptor. The so-called neural-network acceptor we propose, is fast but large

    On the Computational Power of DNA Annealing and Ligation

    Get PDF
    In [20] it was shown that the DNA primitives of Separate, Merge, and Amplify were not sufficiently powerful to invert functions defined by circuits in linear time. Dan Boneh et al [4] show that the addition of a ligation primitive, Append, provides the missing power. The question becomes, "How powerful is ligation? Are Separate, Merge, and Amplify necessary at all?" This paper proposes to informally explore the power of annealing and ligation for DNA computation. We conclude, in fact, that annealing and ligation alone are theoretically capable of universal computation

    Complexity of Restricted and Unrestricted Models of Molecular Computation

    Get PDF
    In [9] and [2] a formal model for molecular computing was proposed, which makes focused use of affinity purification. The use of PCR was suggested to expand the range of feasible computations, resulting in a second model. In this note, we give a precise characterization of these two models in terms of recognized computational complexity classes, namely branching programs (BP) and nondeterministic branching programs (NBP) respectively. This allows us to give upper and lower bounds on the complexity of desired computations. Examples are given of computable and uncomputable problems, given limited time

    Computational Capabilities of Analog and Evolving Neural Networks over Infinite Input Streams

    Get PDF
    International audienceAnalog and evolving recurrent neural networks are super-Turing powerful. Here, we consider analog and evolving neural nets over infinite input streams. We then characterize the topological complexity of their ω-languages as a function of the specific analog or evolving weights that they employ. As a consequence, two infinite hierarchies of classes of analog and evolving neural networks based on the complexity of their underlying weights can be derived. These results constitute an optimal refinement of the super-Turing expressive power of analog and evolving neural networks. They show that analog and evolving neural nets represent natural models for oracle-based infinite computation

    Convergence of Opinion Diffusion is PSPACE-complete

    Full text link
    We analyse opinion diffusion in social networks, where a finite set of individuals is connected in a directed graph and each simultaneously changes their opinion to that of the majority of their influencers. We study the algorithmic properties of the fixed-point behaviour of such networks, showing that the problem of establishing whether individuals converge to stable opinions is PSPACE-complete

    Design of General Purpose Minimal-Auxiliary Ising Machines

    Full text link
    Ising machines are a form of quantum-inspired processing-in-memory computer which has shown great promise for overcoming the limitations of traditional computing paradigms while operating at a fraction of the energy use. The process of designing Ising machines is known as the reverse Ising problem. Unfortunately, this problem is in general computationally intractable: it is a nonconvex mixed-integer linear programming problem which cannot be naively brute-forced except in the simplest cases due to exponential scaling of runtime with number of spins. We prove new theoretical results which allow us to reduce the search space to one with quadratic scaling. We utilize this theory to develop general purpose algorithmic solutions to the reverse Ising problem. In particular, we demonstrate Ising formulations of 3-bit and 4-bit integer multiplication which use fewer total spins than previously known methods by a factor of more than three. Our results increase the practicality of implementing such circuits on modern Ising hardware, where spins are at a premium.Comment: 14 pages, 3 figures, submitted to IEEE International Conference on Rebooting Computing 202
    • …
    corecore