189 research outputs found

    Full-Duplex MIMO Relaying Powered by Wireless Energy Transfer

    Full text link
    We consider a full-duplex decode-and-forward system, where the wirelessly powered relay employs the time-switching protocol to receive power from the source and then transmit information to the destination. It is assumed that the relay node is equipped with two sets of antennas to enable full-duplex communications. Three different interference mitigation schemes are studied, namely, 1) optimal 2) zero-forcing and 3) maximum ratio combining/maximum ratio transmission. We develop new outage probability expressions to investigate delay-constrained transmission throughput of these schemes. Our analysis show interesting performance comparisons of the considered precoding schemes for different system and link parameters.Comment: Accepted for IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC 2015), Invited pape

    On the Maximum Achievable Sum-Rate of Interfering Two-Way Relay Channels

    Get PDF
    Hierarchical networks can provide very high data rates to multiple mobile stations (MSs) through a dense network of fixed relay nodes (RNs) fed by few hub base stations (HBSs). In order to achieve high spectral efficiencies RNs can act as two-way RNs. However the dense RN deployment gives rise to high co-channel interference (CCI) that limits sum-rate performance. In this letter we consider a simple hierarchical network consisting of an HBS with two highly directional antennas communicating with two MSs via two interfering two-way RNs. To mitigate CCI and boost sum-rates we propose a two-way relaying strategy based on AF combined with Network MIMO processing which is applied over the concatenation of the backhaul and access network channels. We compare our proposed strategy with a baseline DF approach and we show that it performs significantly better when CCI is dominant
    • …
    corecore