1,191 research outputs found

    Homotopy Type Theory in Lean

    Full text link
    We discuss the homotopy type theory library in the Lean proof assistant. The library is especially geared toward synthetic homotopy theory. Of particular interest is the use of just a few primitive notions of higher inductive types, namely quotients and truncations, and the use of cubical methods.Comment: 17 pages, accepted for ITP 201

    Modalities in homotopy type theory

    Full text link
    Univalent homotopy type theory (HoTT) may be seen as a language for the category of ∞\infty-groupoids. It is being developed as a new foundation for mathematics and as an internal language for (elementary) higher toposes. We develop the theory of factorization systems, reflective subuniverses, and modalities in homotopy type theory, including their construction using a "localization" higher inductive type. This produces in particular the (nn-connected, nn-truncated) factorization system as well as internal presentations of subtoposes, through lex modalities. We also develop the semantics of these constructions

    Sets in homotopy type theory

    Get PDF
    Homotopy Type Theory may be seen as an internal language for the ∞\infty-category of weak ∞\infty-groupoids which in particular models the univalence axiom. Voevodsky proposes this language for weak ∞\infty-groupoids as a new foundation for mathematics called the Univalent Foundations of Mathematics. It includes the sets as weak ∞\infty-groupoids with contractible connected components, and thereby it includes (much of) the traditional set theoretical foundations as a special case. We thus wonder whether those `discrete' groupoids do in fact form a (predicative) topos. More generally, homotopy type theory is conjectured to be the internal language of `elementary' ∞\infty-toposes. We prove that sets in homotopy type theory form a ΠW\Pi W-pretopos. This is similar to the fact that the 00-truncation of an ∞\infty-topos is a topos. We show that both a subobject classifier and a 00-object classifier are available for the type theoretical universe of sets. However, both of these are large and moreover, the 00-object classifier for sets is a function between 11-types (i.e. groupoids) rather than between sets. Assuming an impredicative propositional resizing rule we may render the subobject classifier small and then we actually obtain a topos of sets

    Copredication in homotopy type theory

    Get PDF
    This paper applies homotopy type theory to formal semantics of natural languages and proposes a new model for the linguistic phenomenon of copredication. Copredication refers to sentences where two predicates which assume different requirements for their arguments are asserted for one single entity, e.g., "the lunch was delicious but took forever". This paper is particularly concerned with copredication sentences with quantification, i.e., cases where the two predicates impose distinct criteria of quantification and individuation, e.g., "Fred picked up and mastered three books." In our solution developed in homotopy type theory and using the rule of existential closure following Heim analysis of indefinites, common nouns are modeled as identifications of their aspects using HoTT identity types, e.g., the common noun book is modeled as identifications of its physical and informational aspects. The previous treatments of copredication in systems of semantics which are based on simple type theory and dependent type theories make the correct predictions but at the expense of ad hoc extensions (e.g., partial functions, dot types and coercive subtyping). The model proposed here, also predicts the correct results but using a conceptually simpler foundation and no ad hoc extensions

    Towards a directed homotopy type theory

    Get PDF
    In this paper, we present a directed homotopy type theory for reasoning synthetically about (higher) categories, directed homotopy theory, and its applications to concurrency. We specify a new `homomorphism' type former for Martin-L\"of type theory which is roughly analogous to the identity type former originally introduced by Martin-L\"of. The homomorphism type former is meant to capture the notions of morphism (from the theory of categories) and directed path (from directed homotopy theory) just as the identity type former is known to capture the notions of isomorphism (from the theory of groupoids) and path (from homotopy theory). Our main result is an interpretation of these homomorphism types into Cat, the category of small categories. There, the interpretation of each homomorphism type hom(a,b) is indeed the set of morphisms between the objects a and b of a category C. We end the paper with an analysis of the interpretation in Cat with which we argue that our homomorphism types are indeed the directed version of Martin-L\"of's identity types

    Concrete Categories in Homotopy Type Theory

    Full text link
    We introduce some classes of genuine higher categories in homotopy type theory, defined as well-behaved subcategories of the category of types. We give several examples, and some techniques for showing other things are not examples. While only a small part of what is needed, it is a natural construction, and may be instructive for people seeking to provide a fully general construction.Comment: 18 page

    Cellular Cohomology in Homotopy Type Theory

    Get PDF
    We present a development of cellular cohomology in homotopy type theory. Cohomology associates to each space a sequence of abelian groups capturing part of its structure, and has the advantage over homotopy groups in that these abelian groups of many common spaces are easier to compute. Cellular cohomology is a special kind of cohomology designed for cell complexes: these are built in stages by attaching spheres of progressively higher dimension, and cellular cohomology defines the groups out of the combinatorial description of how spheres are attached. Our main result is that for finite cell complexes, a wide class of cohomology theories (including the ones defined through Eilenberg-MacLane spaces) can be calculated via cellular cohomology. This result was formalized in the Agda proof assistant

    W-types in Homotopy Type Theory

    Get PDF
    We will give a detailed account of why the simplicial sets model of the univalence axiom due to Voevodsky also models W-types. In addition, we will discuss W-types in categories of simplicial presheaves and an application to models of set theory.Comment: We have corrected the statement of Theorem 3.4. We thank Christian Sattler for alerting us to the error in the original versio
    • …
    corecore