72 research outputs found

    Improved hardness for H-colourings of G-colourable graphs

    Full text link
    We present new results on approximate colourings of graphs and, more generally, approximate H-colourings and promise constraint satisfaction problems. First, we show NP-hardness of colouring kk-colourable graphs with (k⌊k/2⌋)−1\binom{k}{\lfloor k/2\rfloor}-1 colours for every k≥4k\geq 4. This improves the result of Bul\'in, Krokhin, and Opr\v{s}al [STOC'19], who gave NP-hardness of colouring kk-colourable graphs with 2k−12k-1 colours for k≥3k\geq 3, and the result of Huang [APPROX-RANDOM'13], who gave NP-hardness of colouring kk-colourable graphs with 2k1/32^{k^{1/3}} colours for sufficiently large kk. Thus, for k≥4k\geq 4, we improve from known linear/sub-exponential gaps to exponential gaps. Second, we show that the topology of the box complex of H alone determines whether H-colouring of G-colourable graphs is NP-hard for all (non-bipartite, H-colourable) G. This formalises the topological intuition behind the result of Krokhin and Opr\v{s}al [FOCS'19] that 3-colouring of G-colourable graphs is NP-hard for all (3-colourable, non-bipartite) G. We use this technique to establish NP-hardness of H-colouring of G-colourable graphs for H that include but go beyond K3K_3, including square-free graphs and circular cliques (leaving K4K_4 and larger cliques open). Underlying all of our proofs is a very general observation that adjoint functors give reductions between promise constraint satisfaction problems.Comment: Mention improvement in Proposition 2.5. SODA 202

    Complexity of planar signed graph homomorphisms to cycles

    Full text link
    We study homomorphism problems of signed graphs. A signed graph is an undirected graph where each edge is given a sign, positive or negative. An important concept for signed graphs is the operation of switching at a vertex, which is to change the sign of each incident edge. A homomorphism of a graph is a vertex-mapping that preserves the adjacencies; in the case of signed graphs, we also preserve the edge-signs. Special homomorphisms of signed graphs, called s-homomorphisms, have been studied. In an s-homomorphism, we allow, before the mapping, to perform any number of switchings on the source signed graph. This concept has been extensively studied, and a full complexity classification (polynomial or NP-complete) for s-homomorphism to a fixed target signed graph has recently been obtained. Such a dichotomy is not known when we restrict the input graph to be planar (not even for non-signed graph homomorphisms). We show that deciding whether a (non-signed) planar graph admits a homomorphism to the square Ct2C_t^2 of a cycle with t≥6t\ge 6, or to the circular clique K4t/(2t−1)K_{4t/(2t-1)} with t≥2t\ge2, are NP-complete problems. We use these results to show that deciding whether a planar signed graph admits an s-homomorphism to an unbalanced even cycle is NP-complete. (A cycle is unbalanced if it has an odd number of negative edges). We deduce a complete complexity dichotomy for the planar s-homomorphism problem with any signed cycle as a target. We also study further restrictions involving the maximum degree and the girth of the input signed graph. We prove that planar s-homomorphism problems to signed cycles remain NP-complete even for inputs of maximum degree~33 (except for the case of unbalanced 44-cycles, for which we show this for maximum degree~44). We also show that for a given integer gg, the problem for signed bipartite planar inputs of girth gg is either trivial or NP-complete.Comment: 17 pages, 10 figure

    Disproof of the List Hadwiger Conjecture

    Full text link
    The List Hadwiger Conjecture asserts that every KtK_t-minor-free graph is tt-choosable. We disprove this conjecture by constructing a K3t+2K_{3t+2}-minor-free graph that is not 4t4t-choosable for every integer t≥1t\geq 1

    COUNTING SMALL INDUCED SUBGRAPHS WITH HEREDITARY PROPERTIES

    Get PDF
    We study the computational complexity of the problem \#INDSUB(\Phi) of counting k-vertex induced subgraphs of a graph G that satisfy a graph property \Phi. Our main result establishes an exhaustive and explicit classification for all hereditary properties, including tight conditional lower bounds under the Exponential Time Hypothesis (ETH): If a hereditary property \Phi is true for all graphs, or if it is true only for finitely many graphs, then \#INDSUB(\Phi) is solvable in polynomial time. Otherwise, \#INDSUB(\Phi) is \#\sansW[\sansone]-complete when parameterized by k, and, assuming ETH, it cannot be solved in time f(k) \cdot |G|o(k) for any function f. This classification features a wide range of properties for which the corresponding detection problem (as classified by Khot and Raman [Theoret. Comput. Sci., 289 (2002), pp. 997-1008]) is tractable but counting is hard. Moreover, even for properties which are already intractable in their decision version, our results yield significantly stronger lower bounds for the counting problem. As an additional result, we also present an exhaustive and explicit parameterized complexity classification for all properties that are invariant under homomorphic equivalence. By covering one of the most natural and general notions of closure, namely, closure under vertex-deletion (hereditary), we generalize some of the earlier results on this problem. For instance, our results fully subsume and strengthen the existing classification of \#INDSUB(\Phi) for monotone (subgraph-closed) properties due to Roth, Schmitt, and Wellnitz [SIAM J. Comput., (2022), pp. FOCS20-139-FOCS20-174]

    Star Colouring of Bounded Degree Graphs and Regular Graphs

    Full text link
    A kk-star colouring of a graph GG is a function f:V(G)→{0,1,…,k−1}f:V(G)\to\{0,1,\dots,k-1\} such that f(u)≠f(v)f(u)\neq f(v) for every edge uvuv of GG, and every bicoloured connected subgraph of GG is a star. The star chromatic number of GG, χs(G)\chi_s(G), is the least integer kk such that GG is kk-star colourable. We prove that χs(G)≥⌈(d+4)/2⌉\chi_s(G)\geq \lceil (d+4)/2\rceil for every dd-regular graph GG with d≥3d\geq 3. We reveal the structure and properties of even-degree regular graphs GG that attain this lower bound. The structure of such graphs GG is linked with a certain type of Eulerian orientations of GG. Moreover, this structure can be expressed in the LC-VSP framework of Telle and Proskurowski (SIDMA, 1997), and hence can be tested by an FPT algorithm with the parameter either treewidth, cliquewidth, or rankwidth. We prove that for p≥2p\geq 2, a 2p2p-regular graph GG is (p+2)(p+2)-star colourable only if n:=∣V(G)∣n:=|V(G)| is divisible by (p+1)(p+2)(p+1)(p+2). For each p≥2p\geq 2 and nn divisible by (p+1)(p+2)(p+1)(p+2), we construct a 2p2p-regular Hamiltonian graph on nn vertices which is (p+2)(p+2)-star colourable. The problem kk-STAR COLOURABILITY takes a graph GG as input and asks whether GG is kk-star colourable. We prove that 3-STAR COLOURABILITY is NP-complete for planar bipartite graphs of maximum degree three and arbitrarily large girth. Besides, it is coNP-hard to test whether a bipartite graph of maximum degree eight has a unique 3-star colouring up to colour swaps. For k≥3k\geq 3, kk-STAR COLOURABILITY of bipartite graphs of maximum degree kk is NP-complete, and does not even admit a 2o(n)2^{o(n)}-time algorithm unless ETH fails
    • …
    corecore