699 research outputs found

    Varieties of Restriction Semigroups and Varieties of Categories

    Get PDF
    The variety of restriction semigroups may be most simply described as that generated from inverse semigroups (S, ·, −1) by forgetting the inverse operation and retaining the two operations x+ = xx−1 and x* = x−1x. The subvariety B of strictrestriction semigroups is that generated by the Brandt semigroups. At the top of its lattice of subvarieties are the two intervals [B2, B2M = B] and [B0, B0M]. Here, B2and B0 are, respectively, generated by the five-element Brandt semigroup and that obtained by removing one of its nonidempotents. The other two varieties are their joins with the variety of all monoids. It is shown here that the interval [B2, B] is isomorphic to the lattice of varieties of categories, as introduced by Tilson in a seminal paper on this topic. Important concepts, such as the local and global varieties associated with monoids, are readily identified under this isomorphism. Two of Tilson\u27s major theorems have natural interpretations and application to the interval [B2, B] and, with modification, to the interval [B0, B0M] that lies below it. Further exploration may lead to applications in the reverse direction

    H*-algebras and nonunital Frobenius algebras: first steps in infinite-dimensional categorical quantum mechanics

    Full text link
    A certain class of Frobenius algebras has been used to characterize orthonormal bases and observables on finite-dimensional Hilbert spaces. The presence of units in these algebras means that they can only be realized finite-dimensionally. We seek a suitable generalization, which will allow arbitrary bases and observables to be described within categorical axiomatizations of quantum mechanics. We develop a definition of H*-algebra that can be interpreted in any symmetric monoidal dagger category, reduces to the classical notion from functional analysis in the category of (possibly infinite-dimensional) Hilbert spaces, and hence provides a categorical way to speak about orthonormal bases and quantum observables in arbitrary dimension. Moreover, these algebras reduce to the usual notion of Frobenius algebra in compact categories. We then investigate the relations between nonunital Frobenius algebras and H*-algebras. We give a number of equivalent conditions to characterize when they coincide in the category of Hilbert spaces. We also show that they always coincide in categories of generalized relations and positive matrices.Comment: 29 pages. Final versio

    Canonical extensions and ultraproducts of polarities

    Full text link
    J{\'o}nsson and Tarski's notion of the perfect extension of a Boolean algebra with operators has evolved into an extensive theory of canonical extensions of lattice-based algebras. After reviewing this evolution we make two contributions. First it is shown that the failure of a variety of algebras to be closed under canonical extensions is witnessed by a particular one of its free algebras. The size of the set of generators of this algebra can be made a function of a collection of varieties and is a kind of Hanf number for canonical closure. Secondly we study the complete lattice of stable subsets of a polarity structure, and show that if a class of polarities is closed under ultraproducts, then its stable set lattices generate a variety that is closed under canonical extensions. This generalises an earlier result of the author about generation of canonically closed varieties of Boolean algebras with operators, which was in turn an abstraction of the result that a first-order definable class of Kripke frames determines a modal logic that is valid in its so-called canonical frames

    A model-theoretic analysis of Fidel-structures for mbC

    Get PDF
    In this paper the class of Fidel-structures for the paraconsistent logic mbC is studied from the point of view of Model Theory and Category Theory. The basic point is that Fidel-structures for mbC (or mbC-structures) can be seen as first-order structures over the signature of Boolean algebras expanded by two binary predicate symbols N (for negation) and O (for the consistency connective) satisfying certain Horn sentences. This perspective allows us to consider notions and results from Model Theory in order to analyze the class of mbC-structures. Thus, substructures, union of chains, direct products, direct limits, congruences and quotient structures can be analyzed under this perspective. In particular, a Birkhoff-like representation theorem for mbC-structures as subdirect poducts in terms of subdirectly irreducible mbC-structures is obtained by adapting a general result for first-order structures due to Caicedo. Moreover, a characterization of all the subdirectly irreducible mbC-structures is also given. An alternative decomposition theorem is obtained by using the notions of weak substructure and weak isomorphism considered by Fidel for Cn-structures

    A perspective on non-commutative frame theory

    Get PDF
    This paper extends the fundamental results of frame theory to a non-commutative setting where the role of locales is taken over by \'etale localic categories. This involves ideas from quantale theory and from semigroup theory, specifically Ehresmann semigroups, restriction semigroups and inverse semigroups. We establish a duality between the category of complete restriction monoids and the category of \'etale localic categories. The relationship between monoids and categories is mediated by a class of quantales called restriction quantal frames. This result builds on the work of Pedro Resende on the connection between pseudogroups and \'etale localic groupoids but in the process we both generalize and simplify: for example, we do not require involutions and, in addition, we render his result functorial. We also project down to topological spaces and, as a result, extend the classical adjunction between locales and topological spaces to an adjunction between \'etale localic categories and \'etale topological categories. In fact, varying morphisms, we obtain several adjunctions. Just as in the commutative case, we restrict these adjunctions to spatial-sober and coherent-spectral equivalences. The classical equivalence between coherent frames and distributive lattices is extended to an equivalence between coherent complete restriction monoids and distributive restriction semigroups. Consequently, we deduce several dualities between distributive restriction semigroups and spectral \'etale topological categories. We also specialize these dualities for the setting where the topological categories are cancellative or are groupoids. Our approach thus links, unifies and extends the approaches taken in the work by Lawson and Lenz and by Resende.Comment: 69 page
    • …
    corecore