20,705 research outputs found
General Impossibility of Group Homomorphic Encryption in the Quantum World
Group homomorphic encryption represents one of the most important building
blocks in modern cryptography. It forms the basis of widely-used, more
sophisticated primitives, such as CCA2-secure encryption or secure multiparty
computation. Unfortunately, recent advances in quantum computation show that
many of the existing schemes completely break down once quantum computers reach
maturity (mainly due to Shor's algorithm). This leads to the challenge of
constructing quantum-resistant group homomorphic cryptosystems.
In this work, we prove the general impossibility of (abelian) group
homomorphic encryption in the presence of quantum adversaries, when assuming
the IND-CPA security notion as the minimal security requirement. To this end,
we prove a new result on the probability of sampling generating sets of finite
(sub-)groups if sampling is done with respect to an arbitrary, unknown
distribution. Finally, we provide a sufficient condition on homomorphic
encryption schemes for our quantum attack to work and discuss its
satisfiability in non-group homomorphic cases. The impact of our results on
recent fully homomorphic encryption schemes poses itself as an open question.Comment: 20 pages, 2 figures, conferenc
Experimental Demonstration of Quantum Fully Homomorphic Encryption with Application in a Two-Party Secure Protocol
A fully homomorphic encryption system hides data from unauthorized parties while still allowing them to perform computations on the encrypted data. Aside from the straightforward benefit of allowing users to delegate computations to a more powerful server without revealing their inputs, a fully homomorphic cryptosystem can be used as a building block in the construction of a number of cryptographic functionalities. Designing such a scheme remained an open problem until 2009, decades after the idea was first conceived, and the past few years have seen the generalization of this functionality to the world of quantum machines. Quantum schemes prior to the one implemented here were able to replicate some features in particular use cases often associated with homomorphic encryption but lacked other crucial properties, for example, relying on continual interaction to perform a computation or leaking information about the encrypted data. We present the first experimental realization of a quantum fully homomorphic encryption scheme. To demonstrate the versatility of a a quantum fully homomorphic encryption scheme, we further present a toy two-party secure computation task enabled by our scheme
Conditionals in Homomorphic Encryption and Machine Learning Applications
Homomorphic encryption aims at allowing computations on encrypted data
without decryption other than that of the final result. This could provide an
elegant solution to the issue of privacy preservation in data-based
applications, such as those using machine learning, but several open issues
hamper this plan. In this work we assess the possibility for homomorphic
encryption to fully implement its program without relying on other techniques,
such as multiparty computation (SMPC), which may be impossible in many use
cases (for instance due to the high level of communication required). We
proceed in two steps: i) on the basis of the structured program theorem
(Bohm-Jacopini theorem) we identify the relevant minimal set of operations
homomorphic encryption must be able to perform to implement any algorithm; and
ii) we analyse the possibility to solve -- and propose an implementation for --
the most fundamentally relevant issue as it emerges from our analysis, that is,
the implementation of conditionals (requiring comparison and selection/jump
operations). We show how this issue clashes with the fundamental requirements
of homomorphic encryption and could represent a drawback for its use as a
complete solution for privacy preservation in data-based applications, in
particular machine learning ones. Our approach for comparisons is novel and
entirely embedded in homomorphic encryption, while previous studies relied on
other techniques, such as SMPC, demanding high level of communication among
parties, and decryption of intermediate results from data-owners. Our protocol
is also provably safe (sharing the same safety as the homomorphic encryption
schemes), differently from other techniques such as
Order-Preserving/Revealing-Encryption (OPE/ORE).Comment: 14 pages, 1 figure, corrected typos, added introductory pedagogical
section on polynomial approximatio
Dodrant-Homomorphic Encryption for Cloud Databases using Table Lookup
Users of large commercial databases increasingly want to outsource their database operations to a cloud service providers, but guaranteeing the privacy of data in an outsourced database has become the major obstacle to this move. Encrypting all data solves the privacy issue, but makes many operations on the data impossible in the cloud, unless the service provider has the capacity to decrypt data temporarily. Homomorphic encryption would solve this issue, but despite great and on-going progress, it is still far from being operationally feasible. In 2015, we presented what we now call dodrant-homomorphic encryption, a method that encrypts numeric values deterministically using the additively homomorphic Paillier encryption and uses table lookup in order to implement multiplications. We discuss here the security implications of determinism and discuss options to avoid these pitfalls
Classical Homomorphic Encryption for Quantum Circuits
We present the first leveled fully homomorphic encryption scheme for quantum
circuits with classical keys. The scheme allows a classical client to blindly
delegate a quantum computation to a quantum server: an honest server is able to
run the computation while a malicious server is unable to learn any information
about the computation. We show that it is possible to construct such a scheme
directly from a quantum secure classical homomorphic encryption scheme with
certain properties. Finally, we show that a classical homomorphic encryption
scheme with the required properties can be constructed from the learning with
errors problem
- …
