20,705 research outputs found

    General Impossibility of Group Homomorphic Encryption in the Quantum World

    Get PDF
    Group homomorphic encryption represents one of the most important building blocks in modern cryptography. It forms the basis of widely-used, more sophisticated primitives, such as CCA2-secure encryption or secure multiparty computation. Unfortunately, recent advances in quantum computation show that many of the existing schemes completely break down once quantum computers reach maturity (mainly due to Shor's algorithm). This leads to the challenge of constructing quantum-resistant group homomorphic cryptosystems. In this work, we prove the general impossibility of (abelian) group homomorphic encryption in the presence of quantum adversaries, when assuming the IND-CPA security notion as the minimal security requirement. To this end, we prove a new result on the probability of sampling generating sets of finite (sub-)groups if sampling is done with respect to an arbitrary, unknown distribution. Finally, we provide a sufficient condition on homomorphic encryption schemes for our quantum attack to work and discuss its satisfiability in non-group homomorphic cases. The impact of our results on recent fully homomorphic encryption schemes poses itself as an open question.Comment: 20 pages, 2 figures, conferenc

    Experimental Demonstration of Quantum Fully Homomorphic Encryption with Application in a Two-Party Secure Protocol

    Get PDF
    A fully homomorphic encryption system hides data from unauthorized parties while still allowing them to perform computations on the encrypted data. Aside from the straightforward benefit of allowing users to delegate computations to a more powerful server without revealing their inputs, a fully homomorphic cryptosystem can be used as a building block in the construction of a number of cryptographic functionalities. Designing such a scheme remained an open problem until 2009, decades after the idea was first conceived, and the past few years have seen the generalization of this functionality to the world of quantum machines. Quantum schemes prior to the one implemented here were able to replicate some features in particular use cases often associated with homomorphic encryption but lacked other crucial properties, for example, relying on continual interaction to perform a computation or leaking information about the encrypted data. We present the first experimental realization of a quantum fully homomorphic encryption scheme. To demonstrate the versatility of a a quantum fully homomorphic encryption scheme, we further present a toy two-party secure computation task enabled by our scheme

    Conditionals in Homomorphic Encryption and Machine Learning Applications

    Get PDF
    Homomorphic encryption aims at allowing computations on encrypted data without decryption other than that of the final result. This could provide an elegant solution to the issue of privacy preservation in data-based applications, such as those using machine learning, but several open issues hamper this plan. In this work we assess the possibility for homomorphic encryption to fully implement its program without relying on other techniques, such as multiparty computation (SMPC), which may be impossible in many use cases (for instance due to the high level of communication required). We proceed in two steps: i) on the basis of the structured program theorem (Bohm-Jacopini theorem) we identify the relevant minimal set of operations homomorphic encryption must be able to perform to implement any algorithm; and ii) we analyse the possibility to solve -- and propose an implementation for -- the most fundamentally relevant issue as it emerges from our analysis, that is, the implementation of conditionals (requiring comparison and selection/jump operations). We show how this issue clashes with the fundamental requirements of homomorphic encryption and could represent a drawback for its use as a complete solution for privacy preservation in data-based applications, in particular machine learning ones. Our approach for comparisons is novel and entirely embedded in homomorphic encryption, while previous studies relied on other techniques, such as SMPC, demanding high level of communication among parties, and decryption of intermediate results from data-owners. Our protocol is also provably safe (sharing the same safety as the homomorphic encryption schemes), differently from other techniques such as Order-Preserving/Revealing-Encryption (OPE/ORE).Comment: 14 pages, 1 figure, corrected typos, added introductory pedagogical section on polynomial approximatio

    Dodrant-Homomorphic Encryption for Cloud Databases using Table Lookup

    Get PDF
    Users of large commercial databases increasingly want to outsource their database operations to a cloud service providers, but guaranteeing the privacy of data in an outsourced database has become the major obstacle to this move. Encrypting all data solves the privacy issue, but makes many operations on the data impossible in the cloud, unless the service provider has the capacity to decrypt data temporarily. Homomorphic encryption would solve this issue, but despite great and on-going progress, it is still far from being operationally feasible. In 2015, we presented what we now call dodrant-homomorphic encryption, a method that encrypts numeric values deterministically using the additively homomorphic Paillier encryption and uses table lookup in order to implement multiplications. We discuss here the security implications of determinism and discuss options to avoid these pitfalls

    Classical Homomorphic Encryption for Quantum Circuits

    Get PDF
    We present the first leveled fully homomorphic encryption scheme for quantum circuits with classical keys. The scheme allows a classical client to blindly delegate a quantum computation to a quantum server: an honest server is able to run the computation while a malicious server is unable to learn any information about the computation. We show that it is possible to construct such a scheme directly from a quantum secure classical homomorphic encryption scheme with certain properties. Finally, we show that a classical homomorphic encryption scheme with the required properties can be constructed from the learning with errors problem
    corecore