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Dodrant-homomorphic Encryption for 
Cloud Databases Using Table Lookup 
 

Thomas Schwarz 
Marquette University, Milwaukee, WI 
 

Abstract: 
Users of large commercial databases increasingly want to outsource their database operations to a 
cloud service providers, but guaranteeing the privacy of data in an outsourced database has become the 
major obstacle to this move. Encrypting all data solves the privacy issue, but makes many operations on 
the data impossible in the cloud, unless the service provider has the capacity to decrypt data 
temporarily. Homomorphic encryption would solve this issue, but despite great and on-going progress, it 
is still far from being operationally feasible. In 2015, we presented what we now call dodrant-
homomorphic encryption, a method that encrypts numeric values deterministically using the additively 
homomorphic Paillier encryption and uses table lookup in order to implement multiplications. We 
discuss here the security implications of determinism and discuss options to avoid these pitfalls. 

Introduction 
There is an increasing trend towards moving databases to the cloud, more specifically, towards 
Databases-as-a-Service (DBaaS). Google's Big Query, Amazon RDS, and Microsoft SQL Azure are 
commercial examples. DBaaS offers many advantages5,6 for query processing in the cloud, but actual or 
perceived lack of privacy is a major obstacle to wide-spread adoption. Encryption solves these issues 
since it protects “Data at Rest”, but encryption also obstructs query processing. The obvious solution is 
to ship all data back to the data owner or to a trusted site,8 but most tables are too large to make this 
practical and it would defeat the purpose of DBaaS. Sophisticated systems such as Monomi14 still use the 
client for processing when other options fail.7 A different avenue is the use of a trusted component such 
as IBM's cryptocard/secure coprocessor or IBM's Hardware Security Module.10,11 Because these 
components are memory and storage limited, data is stored in encrypted form, shipped in small batches 
to the trusted component where they are decrypted and processed. Systems like Cipherbase2,3 and 
TrustedDB4 take this road. Workable homomorphic encryption would offer a simple solution, since it 
allows direct processing of encrypted data. Unfortunately, despite great progress, it is still far away from 
reality. 

We proposed recently dodrant encryption that uses somewhat deterministic encryption in conjunction 
with semi-homomorphic encryption and logarithm and anti-logarithm tables to expand the set of 
numerical SQL queries that can be performed.9 We see our goal as a stop-gap measure until the 
advances in cryptography lead to a practical method for homomorphic or almost homomorphic 
encryption. 



Many cryptosystems with added properties (such as order preservation) can leak information in a way 
that can be leveraged by an adversary. Deterministic encryption leaks identity, which can be used in a 
frequency attack. If in addition the adversary can calculate certain expressions - a danger that will be 
hard to thwart in our system - then the adversary can go through all values in an encrypted numerical 
table and determine certain values. By calculation, the adversary can generate many more values (such 
as all integers within a certain range) and decrypt large parts of the database table column. Finally, the 
presence of an encrypted value as a key in a table also provides information to the adversary. Thus, for 
our purposes, information leakage is an even more serious problem. 

Dodrant-Homomorphic Encryption 
We now describe our proposal for dodrant-homomorphic encryption of numerical attributes of a 
database. We use Paillier's scheme, defining 
 

(1) 𝜖𝜖:Z → Z𝑁𝑁; 𝑥𝑥 → 𝜖𝜖𝑟𝑟(𝑥𝑥) = 𝑔𝑔𝑥𝑥𝑟𝑟𝑁𝑁(mod 𝑁𝑁2) 
 

with a product 𝑁𝑁 = 𝑝𝑝(1 of two large, safe primes and 𝑔𝑔 ∈ Z𝑁𝑁2 of order a multiple of N. For normal use 
of Paillier's system, 𝑟𝑟 ∈ Z𝑁𝑁∗  is a random number. We however will pick and choose r, for which reason 
we call it the Paillier multiplier. The semi-homomorphic property is 

(2) 𝜖𝜖𝑟𝑟(𝑥𝑥) ⋅ 𝜖𝜖𝑠𝑠(𝑦𝑦)(= 𝑔𝑔𝑥𝑥+𝑦𝑦(𝑟𝑟𝑟𝑟)𝑁𝑁(mod 𝑁𝑁2)) = 𝜖𝜖𝑟𝑟𝑟𝑟(𝑥𝑥 + 𝑦𝑦), 

which allows addition of encrypted values. Note that Paillier's “random” components r and s are 
multiplied. For subtraction, we can use 

(3) 𝜖𝜖𝑟𝑟(𝑥𝑥) ⋅ 𝜖𝜖𝑠𝑠(−𝑦𝑦) = 𝜖𝜖𝑟𝑟𝑟𝑟(𝑥𝑥 − 𝑦𝑦)  
or 

(4) 𝜖𝜖𝑟𝑟(𝑥𝑥)/𝜖𝜖𝑠𝑠(𝑦𝑦) = 𝑔𝑔𝑥𝑥−𝑦𝑦(𝑟𝑟𝑠𝑠−1)𝑁𝑁(mod 𝑁𝑁2) = 𝜖𝜖𝑟𝑟/𝑠𝑠(𝑥𝑥 − 𝑦𝑦) 

Paillier's cryptosystem also allows multiplying an encrypted value with an unencrypted constant c, 
namely 

(5) 𝜖𝜖𝑟𝑟𝑐𝑐(𝑐𝑐𝑐𝑐) = 𝑔𝑔𝑐𝑐𝑐𝑐𝑟𝑟𝑁𝑁𝑁𝑁(mod 𝑁𝑁2) = 𝜖𝜖𝑟𝑟(𝑥𝑥)𝑐𝑐 . 
Databases store numerical data as decimal numbers with a fixed precision and with a fixed range or as 
integers in a fixed range. We convert all decimal numbers to integers by using a scale factor that is 
constant for the attribute. For instance, in order to o represent dollar amounts up to one million dollars, 
we need 100 million values, starting with 0.00𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ. These values are encoded as cents, i.e. 
as 0, … 99999999, using a scale factor of two. If we want to calculate 5% of a dollar amount, we encode 
the 5% = 0.05 as 5. If the amount is $5.99, we multiply the stored value of 599 with 5, yielding 2995, but 
now with a scale factor of 4. At the client, the scale factor and the integer value of the result are 
converted into a decimal number, giving. 2995 which is then rounded to. 30 or thirty cents. Finally, our 
calculations are not done over the natural numbers but are done modulo 𝑁𝑁2, the modulo of Paillier 
encryption. This only poses a problem if an arithmetic operation overflows. 



In order to allow multiplication, we create two tables (Scalar Function Tables, SFT), the log-table 𝐿𝐿 
and and the antilog- table 𝐸𝐸, using the real valued logarithm and exponential functions. We round 
logarithms and exponential values towards the nearest decimal value. We refer to our previous work for 
a detailed discussion of the precision needed and the resulting size of the table. This is an important 
topic for further work, especially since algebraic identities might be used to decrease the table sizes of 
currently about 50 GB. We define the log- table L by 

(6) 𝐿𝐿[𝜖𝜖1(𝑥𝑥)] = 𝜖𝜖1(log (𝑥𝑥)) 

and the antilog or exponential table by 

(7) 𝐸𝐸[𝜖𝜖1(𝑥𝑥)] = 𝜖𝜖𝑟𝑟(exp (𝑥𝑥))𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∈ Z𝑁𝑁∗ . 
To multiply two encrypted values 𝜖𝜖1(𝑥𝑥) and 𝜖𝜖1(𝑦𝑦), we multiply the log-table entries of the encrypted 
values and then lookup the antilog table entry: 

𝐸𝐸[𝐿𝐿[𝜖𝜖1(𝑥𝑥)] ⋅ 𝐿𝐿[𝜖𝜖1(𝑦𝑦)]]
= 𝐸𝐸[𝜖𝜖1(log (𝑥𝑥)) ⋅ 𝜖𝜖1(log (𝑦𝑦)]
= 𝐸𝐸[𝜖𝜖1(log (𝑥𝑥) + log (𝑦𝑦))]
= 𝜖𝜖𝑟𝑟(exp (log (𝑥𝑥) + log (𝑦𝑦)))
= 𝜖𝜖𝑟𝑟(exp (log (𝑥𝑥 ⋅ 𝑦𝑦)))
= 𝜖𝜖𝑟𝑟(𝑥𝑥 ⋅ 𝑦𝑦)

 

We therefore define a multiplication between dodrant-homomorphic encrypted values by 

(8) 𝜖𝜖1(𝑥𝑥) ∗ 𝜖𝜖1(𝑦𝑦) = 𝐸𝐸[𝐿𝐿[𝜖𝜖1(𝑥𝑥)] ⋅ 𝐿𝐿[𝜖𝜖1(𝑦𝑦)]] 

and obtain the identity 
(9) 𝜖𝜖1(𝑥𝑥) ∗ 𝜖𝜖1(𝑦𝑦) = 𝜖𝜖𝑟𝑟(𝑥𝑥 ⋅ 𝑦𝑦). 
In this calculation, additions and multiplications are those of real numbers, as we assume that the 
number 𝑁𝑁 = 𝑝𝑝(1 in Equation 1 is sufficiently large to allow no overflows. This calculation also 
generalizes to more than two factors. For example, we calculate 𝜖𝜖1(𝑥𝑥) ∗ 𝜖𝜖1(𝑦𝑦) ∗ 𝜖𝜖1(𝑧𝑧) not as two 
separate ∗ -multiplications (𝜖𝜖1(𝑥𝑥) ∗ 𝜖𝜖1(𝑦𝑦)) ∗ 𝜖𝜖1(𝑧𝑧), but as 

(10) 𝜖𝜖𝑟𝑟(𝑥𝑥 ⋅ 𝑦𝑦 ⋅ 𝑧𝑧) = 𝐸𝐸[𝐿𝐿[𝜖𝜖1(𝑥𝑥)] ⋅ 𝐿𝐿[𝜖𝜖1(𝑦𝑦)] ⋅ 𝐿𝐿[𝜖𝜖1(𝑧𝑧)]], 
which generalizes to any number of factors. 

Similarly, we can reduce division to division of L-table values: 

https://ieeexplore.ieee.org/document/#deqn1


𝐸𝐸[𝐿𝐿[𝜖𝜖1(𝑥𝑥)]/𝐿𝐿[𝜖𝜖1(𝑦𝑦)]]
= 𝐸𝐸[𝜖𝜖1(log (𝑥𝑥))/𝜖𝜖1(log (𝑦𝑦)]
= 𝐸𝐸[𝜖𝜖1(log (𝑥𝑥) − log (𝑦𝑦))]
= 𝜖𝜖𝑟𝑟(exp (log (𝑥𝑥) − log (𝑦𝑦)))
= 𝜖𝜖𝑟𝑟(exp (log (𝑥𝑥/𝑦𝑦)))
= 𝜖𝜖𝑟𝑟(𝑥𝑥/𝑦𝑦)

 

Again, we define 

(11) 𝜖𝜖1(𝑥𝑥)//𝜖𝜖1(𝑦𝑦) = 𝐸𝐸[𝐿𝐿[𝜖𝜖1(𝑥𝑥)]/𝐿𝐿[𝜖𝜖1(𝑦𝑦)]] 

and obtain with this definition the functional identity 

(12) 𝜖𝜖1(𝑥𝑥)//𝜖𝜖1(𝑦𝑦) = 𝜖𝜖𝑟𝑟(𝑥𝑥/𝑦𝑦). 
We can calculate an expression with any number of operands joined by ∗ and// operators, but once we 
have performed the operation, we have a Paillier-encoded value with multiplier r and are no longer 
capable of using it as an operand in further operations. 

The basic scheme proposed in previous work9 uses a fixed value 𝑟𝑟 = 1.  

This allows comparing the results of calculations with each other as well as other encrypted values, with 
causes its own set of dangers, as we discuss below. 

Since we have gained the capability to calculate sums and products of sums, we can express many, but 
not all SQL queries involving numerical values. In particular, we cannot compare two encrypted 
numerical values for other than equality. It would of course be possible to encrypt each numerical value 
twice, once with an order preserving encryption, and once with dodrant-homomorphic encryption, as in 
CryptDB.13 Unfortunately, the work of Akin and Sunar shows that this has to be done carefully in order 
to not allow frequency attacks.1 

The size of the log and antilog tables is a concern. A Paillier cyphertext of a number is (at least) 16 B. For 
the log table to become useful, it has to contain at the very least numbers corresponding to the 
monetary values 0.01, 0.02, …, 100, 000.00 or 107 values. We have to store the key-value pairs 
(𝜖𝜖1(𝑥𝑥), 𝐿𝐿[𝜖𝜖1(𝑥𝑥)]). The minimum raw size of the log-table is therefore 3.2×108 B or 0.32 GB. Since we are 
storing the tables in an LH* structure, this number is not out of reach for distributed memory. The 
antilog tables use as keys the encrypted values obtained by arithmetic operations on natural logarithms. 
The keys need to have 8 digits after the decimal point and range from 0 to 16.11809565. We need about 
48 GB to store the table, without using compression techniques. Since LH* tables can have a load factor 
exceeding 90 %, the total storage costs are around 52 GB. 

Scalar Function Tables for Dodrant-Homomorphic Encryption 
Paillier's cryptosystem encrypts integers whereas many database tables contain decimal numbers with a 
fixed precision. Recall that we use a scale factor in order to convert decimal fixed precision numbers to 
integers. Multiplication and division of two attribute values will respectively add and subtract the scale 
factors for the two attributes. 



The log-table is a scalar function table. It is organized as a dictionary that associates the dictionary key 
𝜖𝜖1(𝑥𝑥) with the value 𝜖𝜖1(log (𝑥𝑥)). The keys range from 𝜖𝜖1(2) to 𝜖𝜖1(𝑅𝑅), where 𝑅𝑅 is the range chosen. Of 
course, 𝜖𝜖1(log (1)) is 𝜖𝜖1(0) = 1. The Log-table needs to be protected against direct access, as it would 
otherwise leak information by adding up values and see whether their sum is a key. If 𝑋𝑋 = 𝜖𝜖1(𝑥𝑥) and if 
𝑋𝑋 ⋅ 𝑋𝑋 = 𝜖𝜖1(𝑥𝑥 + 𝑥𝑥) is not a key, then 𝑥𝑥 > 𝑅𝑅/2. Passing through the keys, just addition with itself reveals 
the set 𝑀𝑀(𝑅𝑅/2) = {𝜖𝜖1(𝑥𝑥)|𝑥𝑥 ∈ {𝑅𝑅/2 + 1, … ,𝑅𝑅}}. We repeat this step testing whether the double of an 
encrypted value in 𝑀𝑀(𝑅𝑅/2) is in 𝑀𝑀(𝑅𝑅/2) to obtain the set 𝑀𝑀𝑀𝑀(𝑅𝑅/4) = {𝜖𝜖1(𝑥𝑥)|𝑥𝑥 ∈ {𝑅𝑅/4 + 1, … ,𝑅𝑅}}. 
This procedure finally yields the encrypted value of 2, namely 𝜖𝜖1(2), as the dictionary key that can be 
added to itself the most times and 𝜖𝜖1(3) as the second-best value, and so on. This vulnerability is 
general, and is caused by using the same Paillier multiplier, i.e. by deterministic encryption. 

Strict access control for the SFTs might be operationally difficult. Instead, we can add somewhat 
randomly the encryption of sums to the Log-dictionary. Details are left to future work. 

The values of the log-table are the expressions 𝜖𝜖1(log (𝑥𝑥)). The logarithm of an integer value is of course 
usually not an integer. Paillier's system however only encrypts integers. We calculate the natural 
logarithm with a precision of eight digits after the decimal points. This corresponds to using a scale 
factor of 4. We could of course choose another base then base 10 for number representation and/or 
another base for the logarithm, but it turns out that for our range R, these two choices are quite 
reasonable.9 Different choices would result in different table sizes. 

The exp-table needs to be much larger, since the keys need to contain all possible products 

𝐿𝐿(𝜖𝜖1(𝑥𝑥)) ⋅ 𝐿𝐿(𝜖𝜖1(𝑦𝑦)) = 𝜖𝜖1(log (𝑥𝑥) + log (𝑦𝑦)) = 𝜖𝜖1(log (𝑥𝑥 ⋅ 𝑦𝑦)) 

with 𝑥𝑥,𝑦𝑦 ∈ {2, … ,𝑅𝑅}. It has therefore at least 𝑅𝑅2 keys. This however neglects that we accrue a certain 
rounding error in the calculation of the logarithm. Even though the addition of logarithm values is done 
in the integer domain and is therefore completely accurate, we are de facto adding up rounded values 
and so have to expect occasional rounding errors. 

The values of the dictionary constituted by the exp-table are rounded to the same scale factor as before 
and then encrypted. 

We organize both tables as a scalable distributed data structure LH*. Such a hash-structure can have a 
load factor that exceeds 90%. We calculate that both tables would take up less than 100 GB of storage. 
In an age where even small laptops now come routinely with more than 4GB storage, the size of the SFT 
is no hindrance to implementation. Experiential work more than a decade ago has shown that access 
through a distributed hash structure takes less than a milli-second for record look-up. 

Dangers of Dodrant-Homomorphic Encryption 
Since we are using look-up tables, we have to use some type of deterministic encryption, doing away 
with one of the major advantages of Paillier's crypto-scheme. The main problem with deterministic 
encryption is the possibility of attacks based on frequencies. The number of times that a certain 
encrypted value is taken might be a statistical outlier and if this is the case, then this fact can be used to 
determine the unencrypted value. For example, if the most frequent price in the dollar store is 99 cents, 
then we just look for the most frequent encrypted value in the price attribute in order to find the 



encryption of the 99 cents value. Reversely, if a value itself is an outlier and we use order-preserving 
encryption, then we can also determine its encryption from the database. 

Often, knowing a few encryptions of peculiar values is in itself not very dangerous. (Of course, a 
database administrator might be tempted to replace her salary with the CEO's salary, etc.) However, in 
conjunction with the capability to calculate with encrypted data and to compare encrypted values, 
determinism becomes quite a bit, or should we say, even more dangerous. Adversaries can expand their 
knowledge of plaintext - cipher pairs or they can use algebraic identities to find these pairs. 

Assume that we use Paillier multiplier 𝑟𝑟 = 1 in Equation 7. This gives an adversary the capability to 
recognize the encrypted value of zero since 𝜖𝜖1(𝑥𝑥) = 𝑔𝑔0𝑟𝑟𝑁𝑁 = 1. This might be more of an annoyance 
than an exploitable vulnerability, but if the adversary can multiply encrypted value (for example, 
because the adversary has gained the privileges of the administrator), then the adversary can find the 
encrypted value of 1 because it and 0 are the only solutions to 𝑥𝑥 ⋅ 𝑥𝑥 = 𝑥𝑥. Similarly, 2 and 0 are the only 
solutions to 𝑥𝑥 ⋅ 𝑥𝑥 = 𝑥𝑥 + 𝑥𝑥, and in general n and 0 to 𝑥𝑥 ⋅ 𝑥𝑥 = 𝑥𝑥 + 𝑥𝑥 +⋯+ 𝑥𝑥 with n addends on the right 
of the equation. Of course, once an adversary has successfully decrypted 0 and 1, the adversary can 
calculate the encryption of 2, 3,…, creating a large, but manageable lookup table for decoding. While 
presumably records do not consist only of numerical values, it is easy to imagine that the capability of 
decrypting numerical values alone can be leveraged into a more extensive penetration of the database. 
A simple operational countermeasure is to only use dodrant-homomorphic encryption on numerical 
values that need to be added and multiplied. 

Paillier's cryptosystem allows multiplication with constants, so that we obtain yet another class of 
algebraic identities for encrypted values, such as 2𝑥𝑥 = 𝑥𝑥 ⋅ 𝑥𝑥 which again would reveal 𝑥𝑥 = 2. The 
traditional use of Paillier's cryptosystem is completely safe, since one value can be encrypted in a 
multitude of forms so that evaluating identity is impossible. 

In short, besides attacks based on statistical frequency, an adversary can use algebraic identities to 
determine the encryption of certain values and then leverage this to build a dictionary of values. 

Thwarting Attacks Using Algebraic Identities 
An adversary can use algebraic identities if the adversary can calculate with numerical values and 
compare the results. The latter can become possible because we need to use deterministic encryption in 
order to allow the use of tables. However, in our improved scheme, products are encrypted with a 
Paillier multiplier r different from 1. It is therefore impossible to evaluate algebraic identities with a 
product on one side and a non-product on the other side. 

In order to discuss the implications of picking different Paillier multipliers for products, we need to make 
a distinction in the use of numerical attributes in a database table. First, we have numerical attributes 
that are not subject to algebraic manipulations. An example would be social security numbers in the US 
or identity card numbers in Latin America. There is no need to use dodrant homomorphic encryption on 
these. Since they are not subject to frequency attacks (there is one number per individual), but useful 
for join operations, these values can be encrypted with any deterministic encryption such as AES. A 
second type of numerical attribute sees its value subjected only to addition and multiplication by 
constants. This type of attribute can be encrypted with Paillier's scheme with random multipliers. The 
third type of attributes allows addition and multiplication of its attributes. Another difference is whether 

https://ieeexplore.ieee.org/document/#deqn7


we allow numerical values to be updated as a result of a calculation. We cannot see how this would be 
necessary for a numerical attribute of the first kind. Updating a value for an attribute of the second kind 
is also possible, since at worst the Paillier multiplier is determined by the antilogarithm table 𝐹𝐹𝐹𝐹. An 
example for a numerical attribute of the third kind would be prices of items. To determine the total 
costs or shipping costs etc. the cloud service would multiply the price of an item with the total number 
of the item ordered, then add sales or value-added taxes and maybe insurance costs as a percentage of 
the total order value. 

We discuss two different scenarios. First, we can assign random Paillier multiplier in Equation 7. After 
any multiplication on encrypted numerical values, the products can no longer be compared with any 
stored encrypted numerical values and they cannot be factors in further multiplications. Products can 
however be added. We can update numerical attributes of the second kind without problems with the 
result of numerical calculations on attributes of the second and third kind. This is not the case when 
updating values of the third kind since these need to be encoded with a Paillier multiplier of 𝑟𝑟 = 1. The 
owner's system or a trusted service would need to decipher each calculated value, encode it with Paillier 
multiplier 𝑟𝑟 = 1 and then insert it. 

The second possibility is to use a fixed, but hidden constant Paillier multiplier in Equation 7. In this case, 
a query can calculate a value 𝜖𝜖𝑟𝑟(𝑥𝑥) and multiply it with 𝜖𝜖𝑟𝑟−1(1) in order to obtain 𝜖𝜖𝑟𝑟⋅𝑟𝑟−1(1 ⋅ 𝑥𝑥) = 𝜖𝜖1(𝑥𝑥) 
and insert this into the table. Unfortunately, 𝜖𝜖𝑟𝑟−1(1) leaks 𝜖𝜖𝑟𝑟(1), which in turn leaks 𝜖𝜖𝑟𝑟(𝑛𝑛) for any 𝑛𝑛 ∈
ℕ and allows therefore comparisons of products with integers and therefore the exploitation of 
algebraic identities. Other methods such as adding an encrypted value with zero and Paillier multiplier 
𝑟𝑟−1 also do not work for the same reason. 

We conclude that to our best knowledge, it is impossible to have the cloud service automatically insert 
products into attribute values of the third kind. For example, we will not be able to process 
automatically an item-price table with an over-the-board price increase of 3%. 

We discuss as an example the calculation of the mean and the variation of a sequence of dodrant-
homomorphic encrypted numerical values 𝜖𝜖1(𝑥𝑥1), 𝜖𝜖1(𝑥𝑥2) … 𝜖𝜖1(𝑥𝑥𝑛𝑛). In order to calculate the mean, we 
need to count the number of elements in the selection. Now, calculating the count as 𝜖𝜖1(𝑛𝑛) would be a 
dangerous procedure since this would allow an adversary who intercepts the query and the accesses to 
tables to obtain plain text - cypher text values. This is however not necessary as we can treat the 
rounded real value of 1/𝑛𝑛 as a constant and multiply using Equation 5. Recall that 1/𝑛𝑛 is encoded as an 
integer modulo 𝑁𝑁2. We now obtain the encrypted mean 𝜇𝜇 = 1

𝑛𝑛
∑ 𝑥𝑥2𝑛𝑛
𝑖𝑖=1  by 

𝜖𝜖1(𝜇𝜇) = 𝜖𝜖1(
1
𝑛𝑛�𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

)

= (�𝜖𝜖1(𝑥𝑥𝑖𝑖))1/𝑛𝑛
𝑛𝑛

𝑖𝑖=1

= (�𝜖𝜖1(𝑥𝑥𝑖𝑖))1/𝑛𝑛
𝑛𝑛

𝑖𝑖=1
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Here, we first calculate 1/𝑛𝑛(mod 𝑁𝑁) and then use the result as an exponent modulo 𝑁𝑁2. The formula of 
Koenig-Huygens calculates the variance 𝜎𝜎2 as the difference between the average of the squares and 
the square of averages. Its biggest drawback is the possibility for overflow (a fact very relevant for us as 
we need to keep table sizes small and therefore need to limit the range) and the possibility of 
accumulating rounding errors. However, its implementation is simple. The average sum of squares is 
obtained by 

𝜖𝜖𝑟𝑟𝑛𝑛(�𝑥𝑥𝑖𝑖2/𝑛𝑛
𝑛𝑛

𝑖𝑖=1

) = (𝜖𝜖𝑟𝑟𝑛𝑛(�𝑥𝑥𝑖𝑖2
𝑛𝑛

𝑖𝑖=1
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𝑛𝑛
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𝑛𝑛

𝑖𝑖=1

 

The square of the mean is obtained via 
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Both parts are combined by 
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In order to avoid overflows, we can employ a two-pass solution, where we first calculate the mean 𝜇𝜇 as 
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We can even use Welford's one pass incremental method.15 It is based on maintaining a partial mean 

𝜇𝜇𝑖𝑖 = �𝑥𝑥𝜈𝜈/𝑛𝑛
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and partial variance 
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and uses the update formula 

𝜎𝜎𝑖𝑖2 = 𝜎𝜎𝑖𝑖−12 + 𝑖𝑖−1
𝑖𝑖

(𝑥𝑥𝑖𝑖 − 𝜇𝜇i−1)2  

While it is straightforward to implement this formula using constant multiplication and the *-operator 
on encrypted values, the frequent multiplication with constants in the plaintext domain is less attractive 
as these translates into exponentiations in the cipher domain and are more involved. 

Thwarting Frequency Attacks 
Frequency based attacks use known or guessed facts about frequency outliers (such as that the most 
common price in the dollar store is 0.99 or that there is only one admitted student of age 14, recently 



profiled in the student newspaper). There are quite effective when using statistics on more than one 
attribute. 

The advantage of non-deterministic encryption lies precisely in the built-in resilience against frequency 
attacks as every encrypted value appearing in a database is unique (with overwhelming probability). In 
Paillier's scheme, there are basically as many encryptions of a single value (𝑁𝑁 − 1 different Paillier 
multipliers to be precise) as there are values that can be encrypted (𝑁𝑁 to be precise). We propose to 
encode each value 𝑥𝑥 as a pair 

(𝜖𝜖1(𝜌𝜌𝜌𝜌), 𝜖𝜖1(𝜌𝜌)) 

where 𝜌𝜌 is a small random integer. This is reminiscent of the mathematical construction of an Abelian 
group out of a cancellative commutative monoid, for example in constructing the entire numbers from 
natural numbers. The user can use a division to recover 𝜖𝜖𝑟𝑟(𝑥𝑥) as the division of both parts. To add two 
encrypted numbers (𝜖𝜖1(𝜌𝜌1𝑥𝑥1), 𝜖𝜖1(𝜌𝜌1)) and (𝜖𝜖1(𝜌𝜌2𝑥𝑥2), 𝜖𝜖2(𝜌𝜌2)), we essentially add two fractions 
as 

𝑝𝑝1𝑥𝑥1
𝑝𝑝1

+
𝑝𝑝2𝑥𝑥2
𝑝𝑝1

=
𝑝𝑝1𝑝𝑝2𝑥𝑥1 + 𝑝𝑝1𝑝𝑝22𝑥𝑥

𝑝𝑝1𝑝𝑝2
 

i.e. by calculating 

(𝜖𝜖1(𝜌𝜌1𝑥𝑥1) ∗ 𝜖𝜖1(𝜌𝜌2) + 𝜖𝜖1(𝜌𝜌1) ∗ 𝜖𝜖1(𝜌𝜌2𝑥𝑥2), 𝜖𝜖1(𝜌𝜌1) ∗ 𝜖𝜖1(𝜌𝜌2))
= (𝜖𝜖𝑟𝑟(𝜌𝜌1𝜌𝜌2𝑥𝑥1) + 𝜖𝜖𝑟𝑟(𝜌𝜌1𝜌𝜌2𝑥𝑥2), 𝜖𝜖𝑟𝑟(𝜌𝜌1𝜌𝜌2))
= (𝜖𝜖𝑟𝑟2(𝜌𝜌1𝜌𝜌2𝑥𝑥1 + 𝜌𝜌1𝜌𝜌9𝑥𝑥2), 𝜖𝜖𝑟𝑟(𝜌𝜌1𝜌𝜌9)

 

whereas the product of the two encrypted numbers is simply 

(𝜖𝜖1(𝜌𝜌1𝑥𝑥1) ∗ 𝜖𝜖1(𝜌𝜌9𝑥𝑥2), 𝜖𝜖1(𝜌𝜌1) ∗ 𝜖𝜖1(𝜌𝜌9))
= (𝜖𝜖𝑟𝑟(𝜌𝜌1𝜌𝜌2𝑥𝑥1𝑥𝑥2), 𝜖𝜖𝑟𝑟(𝜌𝜌1𝜌𝜌2)).  

These operations generalize immediately to arbitrary numbers of operands. 

Frequency based attempts at deciphering are now impossible, and we are still able to calculate sums of 
products. 

Conclusion 
In 2015, Jajodia, Litwin, and Schwarz proposed a stop-gap solutions for homomorphic encryption9 that 
used a deterministic variant of Paillier's cryptoscheme and large tables. We identified two weaknesses 
that render that scheme insecure and propose a variant that is not subject to these vulnerabilities. 

Future work will also have to address the size of the E and L-tables, which we hope to reduce using 
algebraic means. Before floating point coprocessors, 8 bit and 16 bit processors were able to emulate all 
floating point operations. The same software emulations are applicable to elevate the capability to 
calculate with limited range integers (using small tables) to the capability to process floating point 
numbers. Whether and how this can be done in a safe manner remains to be seen. 



Future work will need to provide a more thorough security assessment, though we are doubtful that at 
the current state of the art in Cryptography a formal proof of security can be attempted. The 
controversy surrounding CryptDB and its security1–2,3,4,5,6,7,8,9,10,11,12,13 highlights the difficulty in this area. 

Finally, there is justified hope that something amounting to almost complete homomorphic encryption 
will eventually become possible. In this case, our stop-gap proposal has lost its raison d’être. In the 
remaining years (or decades), our proposal seems to be interesting, at least for databases with some 
guaranteed privacy but not containing data classified as “Secret”, meaning that its disclosure could bring 
death or bodily harm. 
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	Marquette University, Milwaukee, WI
	Abstract:
	Users of large commercial databases increasingly want to outsource their database operations to a cloud service providers, but guaranteeing the privacy of data in an outsourced database has become the major obstacle to this move. Encrypting all data solves the privacy issue, but makes many operations on the data impossible in the cloud, unless the service provider has the capacity to decrypt data temporarily. Homomorphic encryption would solve this issue, but despite great and on-going progress, it is still far from being operationally feasible. In 2015, we presented what we now call dodrant-homomorphic encryption, a method that encrypts numeric values deterministically using the additively homomorphic Paillier encryption and uses table lookup in order to implement multiplications. We discuss here the security implications of determinism and discuss options to avoid these pitfalls.
	Introduction
	There is an increasing trend towards moving databases to the cloud, more specifically, towards Databases-as-a-Service (DBaaS). Google's Big Query, Amazon RDS, and Microsoft SQL Azure are commercial examples. DBaaS offers many advantages5,6 for query processing in the cloud, but actual or perceived lack of privacy is a major obstacle to wide-spread adoption. Encryption solves these issues since it protects “Data at Rest”, but encryption also obstructs query processing. The obvious solution is to ship all data back to the data owner or to a trusted site,8 but most tables are too large to make this practical and it would defeat the purpose of DBaaS. Sophisticated systems such as Monomi14 still use the client for processing when other options fail.7 A different avenue is the use of a trusted component such as IBM's cryptocard/secure coprocessor or IBM's Hardware Security Module.10,11 Because these components are memory and storage limited, data is stored in encrypted form, shipped in small batches to the trusted component where they are decrypted and processed. Systems like Cipherbase2,3 and TrustedDB4 take this road. Workable homomorphic encryption would offer a simple solution, since it allows direct processing of encrypted data. Unfortunately, despite great progress, it is still far away from reality.
	We proposed recently dodrant encryption that uses somewhat deterministic encryption in conjunction with semi-homomorphic encryption and logarithm and anti-logarithm tables to expand the set of numerical SQL queries that can be performed.9 We see our goal as a stop-gap measure until the advances in cryptography lead to a practical method for homomorphic or almost homomorphic encryption.
	Many cryptosystems with added properties (such as order preservation) can leak information in a way that can be leveraged by an adversary. Deterministic encryption leaks identity, which can be used in a frequency attack. If in addition the adversary can calculate certain expressions - a danger that will be hard to thwart in our system - then the adversary can go through all values in an encrypted numerical table and determine certain values. By calculation, the adversary can generate many more values (such as all integers within a certain range) and decrypt large parts of the database table column. Finally, the presence of an encrypted value as a key in a table also provides information to the adversary. Thus, for our purposes, information leakage is an even more serious problem.
	Dodrant-Homomorphic Encryption
	We now describe our proposal for dodrant-homomorphic encryption of numerical attributes of a database. We use Paillier's scheme, defining
	(1) 𝜖:Z→Z𝑁;𝑥→𝜖𝑟(𝑥)=𝑔𝑥𝑟𝑁(mod 𝑁2)
	with a product 𝑁=𝑝(1 of two large, safe primes and 𝑔∈Z𝑁2 of order a multiple of N. For normal use of Paillier's system, 𝑟∈Z𝑁∗ is a random number. We however will pick and choose r, for which reason we call it the Paillier multiplier. The semi-homomorphic property is
	(2) 𝜖𝑟(𝑥)⋅𝜖𝑠(𝑦)(=𝑔𝑥+𝑦(𝑟𝑠)𝑁(mod 𝑁2))=𝜖𝑟𝑠(𝑥+𝑦),
	which allows addition of encrypted values. Note that Paillier's “random” components r and s are multiplied. For subtraction, we can use
	(3) 𝜖𝑟𝑥⋅𝜖𝑠−𝑦=𝜖𝑟𝑠𝑥−𝑦 
	(4) 𝜖𝑟(𝑥)/𝜖𝑠(𝑦)=𝑔𝑥−𝑦(𝑟𝑠−1)𝑁(mod 𝑁2)=𝜖𝑟/𝑠(𝑥−𝑦)
	Paillier's cryptosystem also allows multiplying an encrypted value with an unencrypted constant c, namely
	(5) 𝜖𝑟𝑐(𝑐𝑥)=𝑔𝑐𝑥𝑟𝑁𝑐(mod 𝑁2)=𝜖𝑟(𝑥)𝑐.
	Databases store numerical data as decimal numbers with a fixed precision and with a fixed range or as integers in a fixed range. We convert all decimal numbers to integers by using a scale factor that is constant for the attribute. For instance, in order to o represent dollar amounts up to one million dollars, we need 100 million values, starting with 0.00𝑎𝑛𝑑𝑒𝑛𝑑𝑖𝑛𝑔𝑤𝑖𝑡ℎ. These values are encoded as cents, i.e. as 0,… 99999999, using a scale factor of two. If we want to calculate 5% of a dollar amount, we encode the 5% = 0.05 as 5. If the amount is $5.99, we multiply the stored value of 599 with 5, yielding 2995, but now with a scale factor of 4. At the client, the scale factor and the integer value of the result are converted into a decimal number, giving. 2995 which is then rounded to. 30 or thirty cents. Finally, our calculations are not done over the natural numbers but are done modulo 𝑁2, the modulo of Paillier encryption. This only poses a problem if an arithmetic operation overflows.
	In order to allow multiplication, we create two tables (Scalar Function Tables, SFT), the log-table 𝐿
	and and the antilog- table 𝐸, using the real valued logarithm and exponential functions. We round logarithms and exponential values towards the nearest decimal value. We refer to our previous work for a detailed discussion of the precision needed and the resulting size of the table. This is an important topic for further work, especially since algebraic identities might be used to decrease the table sizes of currently about 50 GB. We define the log- table L by
	and the antilog or exponential table by
	To multiply two encrypted values 𝜖1(𝑥) and 𝜖1(𝑦), we multiply the log-table entries of the encrypted values and then lookup the antilog table entry:
	We therefore define a multiplication between dodrant-homomorphic encrypted values by
	and obtain the identity
	(9) 𝜖1(𝑥)∗𝜖1(𝑦)=𝜖𝑟(𝑥⋅𝑦).
	In this calculation, additions and multiplications are those of real numbers, as we assume that the number 𝑁=𝑝(1 in Equation 1 is sufficiently large to allow no overflows. This calculation also generalizes to more than two factors. For example, we calculate 𝜖1(𝑥)∗𝜖1(𝑦)∗𝜖1(𝑧) not as two separate ∗ -multiplications (𝜖1(𝑥)∗𝜖1(𝑦))∗𝜖1(𝑧), but as
	which generalizes to any number of factors.
	Similarly, we can reduce division to division of L-table values:
	Again, we define
	and obtain with this definition the functional identity
	We can calculate an expression with any number of operands joined by ∗ and// operators, but once we have performed the operation, we have a Paillier-encoded value with multiplier r and are no longer capable of using it as an operand in further operations.
	The basic scheme proposed in previous work9 uses a fixed value 𝑟=1. 
	This allows comparing the results of calculations with each other as well as other encrypted values, with causes its own set of dangers, as we discuss below.
	Since we have gained the capability to calculate sums and products of sums, we can express many, but not all SQL queries involving numerical values. In particular, we cannot compare two encrypted numerical values for other than equality. It would of course be possible to encrypt each numerical value twice, once with an order preserving encryption, and once with dodrant-homomorphic encryption, as in CryptDB.13 Unfortunately, the work of Akin and Sunar shows that this has to be done carefully in order to not allow frequency attacks.1
	The size of the log and antilog tables is a concern. A Paillier cyphertext of a number is (at least) 16 B. For the log table to become useful, it has to contain at the very least numbers corresponding to the monetary values 0.01, 0.02, …, 100, 000.00 or 107 values. We have to store the key-value pairs (𝜖1(𝑥),𝐿[𝜖1(𝑥)]). The minimum raw size of the log-table is therefore 3.2×108 B or 0.32 GB. Since we are storing the tables in an LH* structure, this number is not out of reach for distributed memory. The antilog tables use as keys the encrypted values obtained by arithmetic operations on natural logarithms. The keys need to have 8 digits after the decimal point and range from 0 to 16.11809565. We need about 48 GB to store the table, without using compression techniques. Since LH* tables can have a load factor exceeding 90 %, the total storage costs are around 52 GB.
	Scalar Function Tables for Dodrant-Homomorphic Encryption
	Paillier's cryptosystem encrypts integers whereas many database tables contain decimal numbers with a fixed precision. Recall that we use a scale factor in order to convert decimal fixed precision numbers to integers. Multiplication and division of two attribute values will respectively add and subtract the scale factors for the two attributes.
	The log-table is a scalar function table. It is organized as a dictionary that associates the dictionary key 𝜖1(𝑥) with the value 𝜖1(log⁡(𝑥)). The keys range from 𝜖1(2) to 𝜖1(𝑅), where 𝑅 is the range chosen. Of course, 𝜖1(log⁡(1)) is 𝜖1(0)=1. The Log-table needs to be protected against direct access, as it would otherwise leak information by adding up values and see whether their sum is a key. If 𝑋=𝜖1(𝑥) and if 𝑋⋅𝑋=𝜖1(𝑥+𝑥) is not a key, then 𝑥>𝑅/2. Passing through the keys, just addition with itself reveals the set 𝑀(𝑅/2)={𝜖1(𝑥)|𝑥∈{𝑅/2+1,…,𝑅}}. We repeat this step testing whether the double of an encrypted value in 𝑀(𝑅/2) is in 𝑀(𝑅/2) to obtain the set 𝑀𝑀(𝑅/4)={𝜖1(𝑥)|𝑥∈{𝑅/4+1,…,𝑅}}. This procedure finally yields the encrypted value of 2, namely 𝜖1(2), as the dictionary key that can be added to itself the most times and 𝜖1(3) as the second-best value, and so on. This vulnerability is general, and is caused by using the same Paillier multiplier, i.e. by deterministic encryption.
	Strict access control for the SFTs might be operationally difficult. Instead, we can add somewhat randomly the encryption of sums to the Log-dictionary. Details are left to future work.
	The values of the log-table are the expressions 𝜖1(log⁡(𝑥)). The logarithm of an integer value is of course usually not an integer. Paillier's system however only encrypts integers. We calculate the natural logarithm with a precision of eight digits after the decimal points. This corresponds to using a scale factor of 4. We could of course choose another base then base 10 for number representation and/or another base for the logarithm, but it turns out that for our range R, these two choices are quite reasonable.9 Different choices would result in different table sizes.
	The exp-table needs to be much larger, since the keys need to contain all possible products
	with 𝑥,𝑦∈{2,…,𝑅}. It has therefore at least 𝑅2 keys. This however neglects that we accrue a certain rounding error in the calculation of the logarithm. Even though the addition of logarithm values is done in the integer domain and is therefore completely accurate, we are de facto adding up rounded values and so have to expect occasional rounding errors.
	The values of the dictionary constituted by the exp-table are rounded to the same scale factor as before and then encrypted.
	We organize both tables as a scalable distributed data structure LH*. Such a hash-structure can have a load factor that exceeds 90%. We calculate that both tables would take up less than 100 GB of storage. In an age where even small laptops now come routinely with more than 4GB storage, the size of the SFT is no hindrance to implementation. Experiential work more than a decade ago has shown that access through a distributed hash structure takes less than a milli-second for record look-up.
	Dangers of Dodrant-Homomorphic Encryption
	Since we are using look-up tables, we have to use some type of deterministic encryption, doing away with one of the major advantages of Paillier's crypto-scheme. The main problem with deterministic encryption is the possibility of attacks based on frequencies. The number of times that a certain encrypted value is taken might be a statistical outlier and if this is the case, then this fact can be used to determine the unencrypted value. For example, if the most frequent price in the dollar store is 99 cents, then we just look for the most frequent encrypted value in the price attribute in order to find the encryption of the 99 cents value. Reversely, if a value itself is an outlier and we use order-preserving encryption, then we can also determine its encryption from the database.
	Often, knowing a few encryptions of peculiar values is in itself not very dangerous. (Of course, a database administrator might be tempted to replace her salary with the CEO's salary, etc.) However, in conjunction with the capability to calculate with encrypted data and to compare encrypted values, determinism becomes quite a bit, or should we say, even more dangerous. Adversaries can expand their knowledge of plaintext - cipher pairs or they can use algebraic identities to find these pairs.
	Assume that we use Paillier multiplier 𝑟=1 in Equation 7. This gives an adversary the capability to recognize the encrypted value of zero since 𝜖1(𝑥)=𝑔0𝑟𝑁=1. This might be more of an annoyance than an exploitable vulnerability, but if the adversary can multiply encrypted value (for example, because the adversary has gained the privileges of the administrator), then the adversary can find the encrypted value of 1 because it and 0 are the only solutions to 𝑥⋅𝑥=𝑥. Similarly, 2 and 0 are the only solutions to 𝑥⋅𝑥=𝑥+𝑥, and in general n and 0 to 𝑥⋅𝑥=𝑥+𝑥+…+𝑥 with n addends on the right of the equation. Of course, once an adversary has successfully decrypted 0 and 1, the adversary can calculate the encryption of 2, 3,…, creating a large, but manageable lookup table for decoding. While presumably records do not consist only of numerical values, it is easy to imagine that the capability of decrypting numerical values alone can be leveraged into a more extensive penetration of the database. A simple operational countermeasure is to only use dodrant-homomorphic encryption on numerical values that need to be added and multiplied.
	Paillier's cryptosystem allows multiplication with constants, so that we obtain yet another class of algebraic identities for encrypted values, such as 2𝑥=𝑥⋅𝑥 which again would reveal 𝑥=2. The traditional use of Paillier's cryptosystem is completely safe, since one value can be encrypted in a multitude of forms so that evaluating identity is impossible.
	In short, besides attacks based on statistical frequency, an adversary can use algebraic identities to determine the encryption of certain values and then leverage this to build a dictionary of values.
	Thwarting Attacks Using Algebraic Identities
	An adversary can use algebraic identities if the adversary can calculate with numerical values and compare the results. The latter can become possible because we need to use deterministic encryption in order to allow the use of tables. However, in our improved scheme, products are encrypted with a Paillier multiplier r different from 1. It is therefore impossible to evaluate algebraic identities with a product on one side and a non-product on the other side.
	In order to discuss the implications of picking different Paillier multipliers for products, we need to make a distinction in the use of numerical attributes in a database table. First, we have numerical attributes that are not subject to algebraic manipulations. An example would be social security numbers in the US or identity card numbers in Latin America. There is no need to use dodrant homomorphic encryption on these. Since they are not subject to frequency attacks (there is one number per individual), but useful for join operations, these values can be encrypted with any deterministic encryption such as AES. A second type of numerical attribute sees its value subjected only to addition and multiplication by constants. This type of attribute can be encrypted with Paillier's scheme with random multipliers. The third type of attributes allows addition and multiplication of its attributes. Another difference is whether we allow numerical values to be updated as a result of a calculation. We cannot see how this would be necessary for a numerical attribute of the first kind. Updating a value for an attribute of the second kind is also possible, since at worst the Paillier multiplier is determined by the antilogarithm table 𝐹𝑖. An example for a numerical attribute of the third kind would be prices of items. To determine the total costs or shipping costs etc. the cloud service would multiply the price of an item with the total number of the item ordered, then add sales or value-added taxes and maybe insurance costs as a percentage of the total order value.
	We discuss two different scenarios. First, we can assign random Paillier multiplier in Equation 7. After any multiplication on encrypted numerical values, the products can no longer be compared with any stored encrypted numerical values and they cannot be factors in further multiplications. Products can however be added. We can update numerical attributes of the second kind without problems with the result of numerical calculations on attributes of the second and third kind. This is not the case when updating values of the third kind since these need to be encoded with a Paillier multiplier of 𝑟=1. The owner's system or a trusted service would need to decipher each calculated value, encode it with Paillier multiplier 𝑟=1 and then insert it.
	The second possibility is to use a fixed, but hidden constant Paillier multiplier in Equation 7. In this case, a query can calculate a value 𝜖𝑟(𝑥) and multiply it with 𝜖𝑟−1(1) in order to obtain 𝜖𝑟⋅𝑟−1(1⋅𝑥)=𝜖1(𝑥) and insert this into the table. Unfortunately, 𝜖𝑟−1(1) leaks 𝜖𝑟(1), which in turn leaks 𝜖𝑟(𝑛) for any 𝑛∈ℕ and allows therefore comparisons of products with integers and therefore the exploitation of algebraic identities. Other methods such as adding an encrypted value with zero and Paillier multiplier 𝑟−1 also do not work for the same reason.
	We conclude that to our best knowledge, it is impossible to have the cloud service automatically insert products into attribute values of the third kind. For example, we will not be able to process automatically an item-price table with an over-the-board price increase of 3%.
	We discuss as an example the calculation of the mean and the variation of a sequence of dodrant-homomorphic encrypted numerical values 𝜖1(𝑥1),𝜖1(𝑥2)…𝜖1(𝑥𝑛). In order to calculate the mean, we need to count the number of elements in the selection. Now, calculating the count as 𝜖1(𝑛) would be a dangerous procedure since this would allow an adversary who intercepts the query and the accesses to tables to obtain plain text - cypher text values. This is however not necessary as we can treat the rounded real value of 1/𝑛 as a constant and multiply using Equation 5. Recall that 1/𝑛 is encoded as an integer modulo 𝑁2. We now obtain the encrypted mean 𝜇=1𝑛𝑖=1𝑛𝑥2 by
	Here, we first calculate 1/𝑛(mod 𝑁) and then use the result as an exponent modulo 𝑁2. The formula of Koenig-Huygens calculates the variance 𝜎2 as the difference between the average of the squares and the square of averages. Its biggest drawback is the possibility for overflow (a fact very relevant for us as we need to keep table sizes small and therefore need to limit the range) and the possibility of accumulating rounding errors. However, its implementation is simple. The average sum of squares is obtained by
	The square of the mean is obtained via
	Both parts are combined by
	In order to avoid overflows, we can employ a two-pass solution, where we first calculate the mean 𝜇 as
	and then
	𝜖𝑟𝑛(𝑖=1𝑛(𝑥−𝜇)2/𝑛)=(𝜖𝑟𝑛(𝑖=1𝑛(𝑥−𝜇)2))1/𝑛=(𝑖=1𝑛𝜖𝑟((𝑥𝑖−𝜇)2))1/𝑛=(𝑖=1𝑛𝜖1(𝑥𝑖−𝜇)∗𝜖1(𝑥𝑥−𝜇))1/𝑛=(𝑖=1𝑛(𝜖1(𝑥𝑖)/𝜖1(𝜇))∗(𝜖1(𝑥𝑖)/𝜖1(𝜇)))1/𝑛
	We can even use Welford's one pass incremental method.15 It is based on maintaining a partial mean
	𝜇𝑖=𝜈=1𝑖𝑥𝜈/𝑛
	and partial variance
	𝜎𝑖2=(1/𝑖)𝜈=1𝑖(𝑥I/−𝜇𝜈)2
	and uses the update formula
	𝜎𝑖2=𝜎𝑖−12+𝑖−1𝑖(𝑥𝑖−𝜇i−1)2 
	While it is straightforward to implement this formula using constant multiplication and the *-operator on encrypted values, the frequent multiplication with constants in the plaintext domain is less attractive as these translates into exponentiations in the cipher domain and are more involved.
	Thwarting Frequency Attacks
	Frequency based attacks use known or guessed facts about frequency outliers (such as that the most common price in the dollar store is 0.99 or that there is only one admitted student of age 14, recently profiled in the student newspaper). There are quite effective when using statistics on more than one attribute.
	The advantage of non-deterministic encryption lies precisely in the built-in resilience against frequency attacks as every encrypted value appearing in a database is unique (with overwhelming probability). In Paillier's scheme, there are basically as many encryptions of a single value (𝑁−1 different Paillier multipliers to be precise) as there are values that can be encrypted (𝑁 to be precise). We propose to encode each value 𝑥 as a pair
	where 𝜌 is a small random integer. This is reminiscent of the mathematical construction of an Abelian group out of a cancellative commutative monoid, for example in constructing the entire numbers from natural numbers. The user can use a division to recover 𝜖𝑟(𝑥) as the division of both parts. To add two encrypted numbers (𝜖1(𝜌1𝑥1),𝜖1(𝜌1)) and (𝜖1(𝜌2𝑥2),𝜖2(𝜌2)), we essentially add two fractions as
	𝑝1𝑥1𝑝1+𝑝2𝑥2𝑝1=𝑝1𝑝2𝑥1+𝑝1𝑝22𝑥𝑝1𝑝2
	i.e. by calculating
	whereas the product of the two encrypted numbers is simply
	(𝜖1(𝜌1𝑥1)∗𝜖1(𝜌9𝑥2),𝜖1(𝜌1)∗𝜖1(𝜌9))=(𝜖𝑟(𝜌1𝜌2𝑥1𝑥2),𝜖𝑟(𝜌1𝜌2)).
	These operations generalize immediately to arbitrary numbers of operands.
	Frequency based attempts at deciphering are now impossible, and we are still able to calculate sums of products.
	Conclusion
	In 2015, Jajodia, Litwin, and Schwarz proposed a stop-gap solutions for homomorphic encryption9 that used a deterministic variant of Paillier's cryptoscheme and large tables. We identified two weaknesses that render that scheme insecure and propose a variant that is not subject to these vulnerabilities.
	Future work will also have to address the size of the E and L-tables, which we hope to reduce using algebraic means. Before floating point coprocessors, 8 bit and 16 bit processors were able to emulate all floating point operations. The same software emulations are applicable to elevate the capability to calculate with limited range integers (using small tables) to the capability to process floating point numbers. Whether and how this can be done in a safe manner remains to be seen.
	Future work will need to provide a more thorough security assessment, though we are doubtful that at the current state of the art in Cryptography a formal proof of security can be attempted. The controversy surrounding CryptDB and its security1–2,3,4,5,6,7,8,9,10,11,12,13 highlights the difficulty in this area.
	Finally, there is justified hope that something amounting to almost complete homomorphic encryption will eventually become possible. In this case, our stop-gap proposal has lost its raison d’être. In the remaining years (or decades), our proposal seems to be interesting, at least for databases with some guaranteed privacy but not containing data classified as “Secret”, meaning that its disclosure could bring death or bodily harm.
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