10 research outputs found

    Periodic Homogenization for Inertial Particles

    Get PDF
    We study the problem of homogenization for inertial particles moving in a periodic velocity field, and subject to molecular diffusion. We show that, under appropriate assumptions on the velocity field, the large scale, long time behavior of the inertial particles is governed by an effective diffusion equation for the position variable alone. To achieve this we use a formal multiple scale expansion in the scale parameter. This expansion relies on the hypo-ellipticity of the underlying diffusion. An expression for the diffusivity tensor is found and various of its properties studied. In particular, an expansion in terms of the non-dimensional particle relaxation time τ\tau (the Stokes number) is shown to co-incide with the known result for passive (non-inertial) tracers in the singular limit τ→0\tau \to 0. This requires the solution of a singular perturbation problem, achieved by means of a formal multiple scales expansion in τ.\tau. Incompressible and potential fields are studied, as well as fields which are neither, and theoretical findings are supported by numerical simulations.Comment: 31 pages, 7 figures, accepted for publication in Physica D. Typos corrected. One reference adde

    Homogenization of Parabolic Equations with a Continuum of Space and Time Scales

    Get PDF
    This paper addresses the issue of the homogenization of linear divergence form parabolic operators in situations where no ergodicity and no scale separation in time or space are available. Namely, we consider divergence form linear parabolic operators in Ω⊂Rn\Omega \subset \mathbb{R}^n with L∞(Ω×(0,T))L^\infty(\Omega \times (0,T))-coefficients. It appears that the inverse operator maps the unit ball of L2(Ω×(0,T))L^2(\Omega\times (0,T)) into a space of functions which at small (time and space) scales are close in H1H^1 norm to a functional space of dimension nn. It follows that once one has solved these equations at least nn times it is possible to homogenize them both in space and in time, reducing the number of operation counts necessary to obtain further solutions. In practice we show under a Cordes-type condition that the first order time derivatives and second order space derivatives of the solution of these operators with respect to caloric coordinates are in L2L^2 (instead of H−1H^{-1} with Euclidean coordinates). If the medium is time-independent, then it is sufficient to solve nn times the associated elliptic equation in order to homogenize the parabolic equation

    Langevin dynamics with space-time periodic nonequilibrium forcing

    Full text link
    We present results on the ballistic and diffusive behavior of the Langevin dynamics in a periodic potential that is driven away from equilibrium by a space-time periodic driving force, extending some of the results obtained by Collet and Martinez. In the hyperbolic scaling, a nontrivial average velocity can be observed even if the external forcing vanishes in average. More surprisingly, an average velocity in the direction opposite to the forcing may develop at the linear response level -- a phenomenon called negative mobility. The diffusive limit of the non-equilibrium Langevin dynamics is also studied using the general methodology of central limit theorems for additive functionals of Markov processes. To apply this methodology, which is based on the study of appropriate Poisson equations, we extend recent results on pointwise estimates of the resolvent of the generator associated with the Langevin dynamics. Our theoretical results are illustrated by numerical simulations of a two-dimensional system

    Temporal homogenization of linear ODEs, with applications to parametric super-resonance and energy harvest

    Get PDF
    We consider the temporal homogenization of linear ODEs of the form ẋ =Ax+ϵP(t)x+f(t), where P(t) is periodic and ϵ is small. Using a 2-scale expansion approach, we obtain the long-time approximation x(t)≈exp(At) (Ω(t)+∫^t_0exp(−Aτ)f(τ)dτ), where Ω solves the cell problem Ω=ϵBΩ+ϵF(t) with an effective matrix B and an explicitly-known F(t). We provide necessary and sufficient conditions for the accuracy of the approximation (over a O(ϵ^(−1)) time-scale), and show how B can be computed (at a cost independent of ϵ). As a direct application, we investigate the possibility of using RLC circuits to harvest the energy contained in small scale oscillations of ambient electromagnetic fields (such as Schumann resonances). Although a RLC circuit parametrically coupled to the field may achieve such energy extraction via parametric resonance, its resistance R needs to be smaller than a threshold κ proportional to the fluctuations of the field, thereby limiting practical applications. We show that if n RLC circuits are appropriately coupled via mutual capacitances or inductances, then energy extraction can be achieved when the resistance of each circuit is smaller than nκ. Hence, if the resistance of each circuit has a non-zero fixed value, energy extraction can be made possible through the coupling of a sufficiently large number n of circuits (n≈1000 for the first mode of Schumann resonances and contemporary values of capacitances, inductances and resistances). The theory is also applied to the control of the oscillation amplitude of a (damped) oscillator

    Homogenization in a periodic and time-dependent potential

    No full text
    This paper contains a study of the long time behavior of a diffusion process in a periodic potential. The first goal is to determine a suitable rescaling of time and space so that the diffusion process converges to some homogeneous limit. The issue of interest is to characterize the effective evolution equation. The main result is that in some cases large drifts must be removed in order to get a diffusive asymptotic behavior. This is applied to the homogenization of parabolic differential equations

    Homogenization in a Periodic and Time-Dependent Potential

    No full text
    corecore