1,074 research outputs found

    Group Invariance, Stability to Deformations, and Complexity of Deep Convolutional Representations

    Get PDF
    The success of deep convolutional architectures is often attributed in part to their ability to learn multiscale and invariant representations of natural signals. However, a precise study of these properties and how they affect learning guarantees is still missing. In this paper, we consider deep convolutional representations of signals; we study their invariance to translations and to more general groups of transformations, their stability to the action of diffeomorphisms, and their ability to preserve signal information. This analysis is carried by introducing a multilayer kernel based on convolutional kernel networks and by studying the geometry induced by the kernel mapping. We then characterize the corresponding reproducing kernel Hilbert space (RKHS), showing that it contains a large class of convolutional neural networks with homogeneous activation functions. This analysis allows us to separate data representation from learning, and to provide a canonical measure of model complexity, the RKHS norm, which controls both stability and generalization of any learned model. In addition to models in the constructed RKHS, our stability analysis also applies to convolutional networks with generic activations such as rectified linear units, and we discuss its relationship with recent generalization bounds based on spectral norms

    The Sample Complexity of One-Hidden-Layer Neural Networks

    Full text link
    We study norm-based uniform convergence bounds for neural networks, aiming at a tight understanding of how these are affected by the architecture and type of norm constraint, for the simple class of scalar-valued one-hidden-layer networks, and inputs bounded in Euclidean norm. We begin by proving that in general, controlling the spectral norm of the hidden layer weight matrix is insufficient to get uniform convergence guarantees (independent of the network width), while a stronger Frobenius norm control is sufficient, extending and improving on previous work. Motivated by the proof constructions, we identify and analyze two important settings where (perhaps surprisingly) a mere spectral norm control turns out to be sufficient: First, when the network's activation functions are sufficiently smooth (with the result extending to deeper networks); and second, for certain types of convolutional networks. In the latter setting, we study how the sample complexity is additionally affected by parameters such as the amount of overlap between patches and the overall number of patches.Comment: Bug fixed in proof of Theorem 2 (resulting in different log factors); Other minor edit

    A jamming transition from under- to over-parametrization affects loss landscape and generalization

    Full text link
    We argue that in fully-connected networks a phase transition delimits the over- and under-parametrized regimes where fitting can or cannot be achieved. Under some general conditions, we show that this transition is sharp for the hinge loss. In the whole over-parametrized regime, poor minima of the loss are not encountered during training since the number of constraints to satisfy is too small to hamper minimization. Our findings support a link between this transition and the generalization properties of the network: as we increase the number of parameters of a given model, starting from an under-parametrized network, we observe that the generalization error displays three phases: (i) initial decay, (ii) increase until the transition point --- where it displays a cusp --- and (iii) slow decay toward a constant for the rest of the over-parametrized regime. Thereby we identify the region where the classical phenomenon of over-fitting takes place, and the region where the model keeps improving, in line with previous empirical observations for modern neural networks.Comment: arXiv admin note: text overlap with arXiv:1809.0934

    The Convex Landscape of Neural Networks: Characterizing Global Optima and Stationary Points via Lasso Models

    Full text link
    Due to the non-convex nature of training Deep Neural Network (DNN) models, their effectiveness relies on the use of non-convex optimization heuristics. Traditional methods for training DNNs often require costly empirical methods to produce successful models and do not have a clear theoretical foundation. In this study, we examine the use of convex optimization theory and sparse recovery models to refine the training process of neural networks and provide a better interpretation of their optimal weights. We focus on training two-layer neural networks with piecewise linear activations and demonstrate that they can be formulated as a finite-dimensional convex program. These programs include a regularization term that promotes sparsity, which constitutes a variant of group Lasso. We first utilize semi-infinite programming theory to prove strong duality for finite width neural networks and then we express these architectures equivalently as high dimensional convex sparse recovery models. Remarkably, the worst-case complexity to solve the convex program is polynomial in the number of samples and number of neurons when the rank of the data matrix is bounded, which is the case in convolutional networks. To extend our method to training data of arbitrary rank, we develop a novel polynomial-time approximation scheme based on zonotope subsampling that comes with a guaranteed approximation ratio. We also show that all the stationary of the nonconvex training objective can be characterized as the global optimum of a subsampled convex program. Our convex models can be trained using standard convex solvers without resorting to heuristics or extensive hyper-parameter tuning unlike non-convex methods. Through extensive numerical experiments, we show that convex models can outperform traditional non-convex methods and are not sensitive to optimizer hyperparameters.Comment: A preliminary version of part of this work was published at ICML 2020 with the title "Neural Networks are Convex Regularizers: Exact Polynomial-time Convex Optimization Formulations for Two-layer Networks
    corecore