7,969 research outputs found
Multi-directional colour edge detector using linear quaternion system convolution
A new linear colour image filter based on linear quaternion systems (LQSs) is introduced. It detects horizontal, vertical, left- and right-diagonal edges with a single LQS convolution mask. The proposed filter is a canonic minimal filter of four LQS filters, each with different angles of rotation combined parallel wise. Different angles of rotation are a key features of the new filter such that horizontal, vertical, left, and right-diagonal LQS filter masks rotate pixels through angles π/2, 5π/2, 3π/2, and 7π/2, respectively. Although, the four LQS masks are combined parallel to make a single LQS mask but derived using four quaternion convolutions, one for each direction of edges, the LQS filter produces a result without the combination of results from four separate edge detectors. This methodology could be generalised to design more elaborate LQS filters to perform other geometric operations on colour image pixels. The proposed filter translates smoothly changing colours to different shades of grey and produces coloured edges in multiple directions, where there is a sudden change of colour in the original image. Another key idea of the proposed filter is that it is linear because it operates in homogeneous coordinates
Placental Flattening via Volumetric Parameterization
We present a volumetric mesh-based algorithm for flattening the placenta to a
canonical template to enable effective visualization of local anatomy and
function. Monitoring placental function in vivo promises to support pregnancy
assessment and to improve care outcomes. We aim to alleviate visualization and
interpretation challenges presented by the shape of the placenta when it is
attached to the curved uterine wall. To do so, we flatten the volumetric mesh
that captures placental shape to resemble the well-studied ex vivo shape. We
formulate our method as a map from the in vivo shape to a flattened template
that minimizes the symmetric Dirichlet energy to control distortion throughout
the volume. Local injectivity is enforced via constrained line search during
gradient descent. We evaluate the proposed method on 28 placenta shapes
extracted from MRI images in a clinical study of placental function. We achieve
sub-voxel accuracy in mapping the boundary of the placenta to the template
while successfully controlling distortion throughout the volume. We illustrate
how the resulting mapping of the placenta enhances visualization of placental
anatomy and function. Our code is freely available at
https://github.com/mabulnaga/placenta-flattening .Comment: MICCAI 201
Semidefinite descriptions of the convex hull of rotation matrices
We study the convex hull of , thought of as the set of
orthogonal matrices with unit determinant, from the point of view of
semidefinite programming. We show that the convex hull of is doubly
spectrahedral, i.e. both it and its polar have a description as the
intersection of a cone of positive semidefinite matrices with an affine
subspace. Our spectrahedral representations are explicit, and are of minimum
size, in the sense that there are no smaller spectrahedral representations of
these convex bodies.Comment: 29 pages, 1 figur
Extrinisic Calibration of a Camera-Arm System Through Rotation Identification
Determining extrinsic calibration parameters is a necessity in any robotic
system composed of actuators and cameras. Once a system is outside the lab
environment, parameters must be determined without relying on outside artifacts
such as calibration targets. We propose a method that relies on structured
motion of an observed arm to recover extrinsic calibration parameters. Our
method combines known arm kinematics with observations of conics in the image
plane to calculate maximum-likelihood estimates for calibration extrinsics.
This method is validated in simulation and tested against a real-world model,
yielding results consistent with ruler-based estimates. Our method shows
promise for estimating the pose of a camera relative to an articulated arm's
end effector without requiring tedious measurements or external artifacts.
Index Terms: robotics, hand-eye problem, self-calibration, structure from
motio
- …
