7,969 research outputs found

    Multi-directional colour edge detector using linear quaternion system convolution

    Get PDF
    A new linear colour image filter based on linear quaternion systems (LQSs) is introduced. It detects horizontal, vertical, left- and right-diagonal edges with a single LQS convolution mask. The proposed filter is a canonic minimal filter of four LQS filters, each with different angles of rotation combined parallel wise. Different angles of rotation are a key features of the new filter such that horizontal, vertical, left, and right-diagonal LQS filter masks rotate pixels through angles π/2, 5π/2, 3π/2, and 7π/2, respectively. Although, the four LQS masks are combined parallel to make a single LQS mask but derived using four quaternion convolutions, one for each direction of edges, the LQS filter produces a result without the combination of results from four separate edge detectors. This methodology could be generalised to design more elaborate LQS filters to perform other geometric operations on colour image pixels. The proposed filter translates smoothly changing colours to different shades of grey and produces coloured edges in multiple directions, where there is a sudden change of colour in the original image. Another key idea of the proposed filter is that it is linear because it operates in homogeneous coordinates

    Placental Flattening via Volumetric Parameterization

    Full text link
    We present a volumetric mesh-based algorithm for flattening the placenta to a canonical template to enable effective visualization of local anatomy and function. Monitoring placental function in vivo promises to support pregnancy assessment and to improve care outcomes. We aim to alleviate visualization and interpretation challenges presented by the shape of the placenta when it is attached to the curved uterine wall. To do so, we flatten the volumetric mesh that captures placental shape to resemble the well-studied ex vivo shape. We formulate our method as a map from the in vivo shape to a flattened template that minimizes the symmetric Dirichlet energy to control distortion throughout the volume. Local injectivity is enforced via constrained line search during gradient descent. We evaluate the proposed method on 28 placenta shapes extracted from MRI images in a clinical study of placental function. We achieve sub-voxel accuracy in mapping the boundary of the placenta to the template while successfully controlling distortion throughout the volume. We illustrate how the resulting mapping of the placenta enhances visualization of placental anatomy and function. Our code is freely available at https://github.com/mabulnaga/placenta-flattening .Comment: MICCAI 201

    Semidefinite descriptions of the convex hull of rotation matrices

    Full text link
    We study the convex hull of SO(n)SO(n), thought of as the set of n×nn\times n orthogonal matrices with unit determinant, from the point of view of semidefinite programming. We show that the convex hull of SO(n)SO(n) is doubly spectrahedral, i.e. both it and its polar have a description as the intersection of a cone of positive semidefinite matrices with an affine subspace. Our spectrahedral representations are explicit, and are of minimum size, in the sense that there are no smaller spectrahedral representations of these convex bodies.Comment: 29 pages, 1 figur

    Extrinisic Calibration of a Camera-Arm System Through Rotation Identification

    Get PDF
    Determining extrinsic calibration parameters is a necessity in any robotic system composed of actuators and cameras. Once a system is outside the lab environment, parameters must be determined without relying on outside artifacts such as calibration targets. We propose a method that relies on structured motion of an observed arm to recover extrinsic calibration parameters. Our method combines known arm kinematics with observations of conics in the image plane to calculate maximum-likelihood estimates for calibration extrinsics. This method is validated in simulation and tested against a real-world model, yielding results consistent with ruler-based estimates. Our method shows promise for estimating the pose of a camera relative to an articulated arm's end effector without requiring tedious measurements or external artifacts. Index Terms: robotics, hand-eye problem, self-calibration, structure from motio
    corecore