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1 Introduction

Computer graphics is about visualization, which we often call rendering, of 3D models. For
some applications, it is not essential that this rendering is real-time, but if user interaction
is involved, it is important that the user gets immediate feedback on her input. For
fast paced computer games up to around 60 Hz may be required, but in many cases we
can make do with somewhat less. Arguably, the word “real-time” means just that the
clock used in the simulation (or computer game) is neither slower nor faster than a real
world clock. In other words, there is no precise definition of how many frames per second
it takes before rendering is real-time. Nor is there any prescribed method for real-time
rendering. However, apart from some servers or the cheapest netbooks, recent computers
invariably include hardware dedicated to real-time rendering. Such hardware is usually an
implementation of the pipeline described in this note. In PCs the hardware is normally in
the form of a graphics card which contains a graphics processing unit (GPU) as the central
processor. Recent GPUs include some of the most powerful (in terms of operations per
second) chips ever made.

A graphics card is simply a machine for drawing triangles with texture. Of course, a
graphics card is also capable of drawing other primitives such as general polygons, points,
and lines, but triangle drawing and texture mapping are the essential features.

From the programming point of view, we need a driver and an API which allows us to
send data and commands to the graphics card. While this text makes only few references
to the notion of a graphics API, it is important to mention that there are two main APIs in
use: DirectX and OpenGL. The former is specified by Microsoft and the supported DirectX
version is the most useful way of specifying the capabilities of a graphics card. The latter
is the most useful API for cross platform development, since OpenGL is the only option
on most platforms that do not run some version of Microsoft Windows. Both APIs have
bindings for several languages and both have derivative APIs for specialized platforms such
as game consoles or mobile platforms.

1.1 Note to the Reader

The goal of this lecture note is to give you a fundamental, functional understanding of
how the real-time rendering pipeline of a graphics card works. “Functional” means that
we see things from the programmers point of view rather than the hardware designers.
We also emphasize math. In particular, we discuss the coordinate transformations and the
interpolation techniques which are used throughout the real-time rendering pipeline.
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You do not need to understand graphics programming to understand this text, nor
will you learn graphics programming from this text. These lecture notes go together with
some exercises in a simple programming language such as Matlab and my own tool TOGL
which is short for Text OpenGL. Neither Matlab nor TOGL require you to learn C++ or
to even use a compiler. However, knowledge of Matlab or TOGL is also not a requirement
for understanding this text, but you can learn about TOGL from the documentation [4].

If you do want to dig deeper and learn graphics programming with OpenGL using C
or C++, we recommend Angel’s book as a place to start [3]. Haines, Akenine-Möller, and
Hoffman’s book Real-Time Rendering is also an important source which covers almost all
aspects of real-time graphics to the point of being nearly an encyclopedia [2].

In summary, this text is a very quick introduction to the principles of real-time graphics.
Hopefully, it will whet your appetite for doing computer graphics and give you a solid
understanding of the basic principles.

1.2 Acknowledgements

Jeppe E. Revall Frisvad and Marek K. Misztal found numerous spelling mistakes and
unclear phrasings, and correcting these issues greatly improved the text.

2 Overview of the pipeline

Rasterization
polygons->pixels

Fragment
Processing

Fragment
Operations

Clip
W-divide
Viewport
transform
Cull

Vertex
Processing

Primitive
Assembly

CommandsGeometry Textures Frame Buffer
Video Memory

Tex cache

T&L cache

System

GEOMETRY RASTERIZATION FRAGMENT

Figure 1: The pipeline in a graphics card. We can roughly divide the pipeline into a
geometry part where vertices are transformed, rasterization where triangles are turned
into fragments (potential pixels), and a fragment part where we process fragments and
finally write them to the framebuffer.

The pipeline of a graphics card is illustrated in Figure 1. The input is geometry in
the form of triangles, textures, and graphics commands. The corners of triangles are
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denoted vertices, and the first thing that happens is that we compute lighting (i.e. color)
for the vertices and transform them as described in the next section. After lighting and
transformation, we assemble the primitives (triangles) and perform a number of steps: We
clip away geometry that is outside the viewing frustum, i.e. the part of the world space that
maps to our screen. We cull (i.e. remove from the pipeline) triangles which are invisible,
and we perform the final part of the perspective projection which is the w divide.

Triangles are then rasterized which means they are turned into fragments: Potential
pixels that have not yet been written to the framebuffer are denoted fragments. Next, the
color is computed for each fragment. Often, this is simply done by interpolating the color
between the vertices of the triangle. After shading, some more fragment operations are
performed, and, finally, the fragment is written to the framebuffer.

Note that the above process is easy to implement in a parallel fashion. The computa-
tions on a vertex are independent from those on any other vertex, and the computations on
a fragment are independent from those on any other fragment. Consequently, we can pro-
cess many vertices and fragments in parallel, and, in fact, this parallelism is well exploited
by modern graphics processing units.

3 Vertex Transformation and Projection

An important part of the graphics pipeline is the geometric transformation of vertices. We
always represent the vertices in homogeneous coordinates. This means that a 3D point is
specified in the following way

p =


x
y
z
w


where w is almost always 1. Note that letters in boldface denote vectors (or matrices).
Note also that vectors are column vectors unless otherwise stated. Just as for vectors, we
operate with matrices in homogeneous coordinates. In other words, the matrices we use
are of the form

M =


m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44


As you see above, we use capitals in boldface to denote matrices. Since we use column
vectors, we multiply vectors onto matrices from the right:

q = Mp

For more details on linear algebra, please see the Appendix A in the course notes [1].
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Object World Eye

Normalized
device

Clip Window

Model View

Projection

W divide Viewport

Figure 2: The coordinate systems used in real-time rendering. The words in the boxes
denote coordinate systems, and the words over the arrows denote transformations. The
red box is the object we render, and the coordinate axes are indicated by heavy black lines.
The viewing frustum of the virtual camera is indicated by a green box.

A number of coordinate systems are used in real-time rendering, and to a large extent
the goal of this section is to give you a fairly precise understanding of why we need these
coordinate systems and what transformations take you from one to the next (cf. Figure 2).

First of all, you specify the vertices of a 3D object in a coordinate system which is
convenient for the object. Say you model a rectangular box. In this case you would
typically align the edges of the box with the axes of the coordinate system and place its
center in the origin (cf. Figure 2). However, this box needs to be transformed in order to
place and orient it in the scene. This is often called the model transformation. After the
model transformation, your box is in world coordinates.

In computer graphics, we often use a special coordinate system for the camera, and it
is more convenient to think about the camera transformation as a transformation which
takes the scene and positions it in front of the camera rather than a transformation which
positions the camera in front of the scene. Consequently, we will use the interpretation that
your box is next transformed into eye coordinates - the coordinate system of the camera,
which, incidentally, is always placed at the origin and looking down the negative Z axis.
The transformation is called the view transformation.

In eye coordinates, we multiply the vertices of our box onto the projection matrix which
produces clip coordinates. We perform the so called perspective divide to get normalized
device coordinates from which the viewport transformation finally produces window coor-
dinates. The coordinate systems and transformations are illustrated in Figure 2.

In the rest of this section, we will describe this pipeline of transformations in a bit more
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detail. Note that the transformations could be done in several ways sometimes, but we
follow the procedure described in the specification for the OpenGL API [6].

3.1 Model Transformation

Figure 3: A robot arm created with simple primitives (apart from the teapot). Each
primitive has been transformed from object to world coordinates with its own model trans-
formation.

This first transformation assumes that our objects are not directly represented in the
world coordinate system. World coordinates is the system where we represent our scene,
and normally we have a separate coordinate system for each of the objects that go into
the scene. That is convenient because we might have many instances of the same object
in a scene. The instances would only differ by model transformation and possibly the
material used for rendering. For instance, observe the robot arm “holding” a teapot in
Figure 3. The scene contains four cubes, four spheres and a teapot. The cubes and spheres
are all drawn via calls to the same function in the graphics API but with different model
transforms.

In principle, we can use any 4× 4 matrix to transform our points from object to world
coordinates. However, we generally restrict ourselves to rotation, translation and scaling
(and sometimes reflection). We will briefly show how the corresponding matrices look in
homogeneous coordinates. 3× 3 rotation matrices for 3D rotation are described in details
in Appendix 3.1 of [1]. In homogeneous coordinates, the 3 × 3 rotation matrix, R3×3 is
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simply the upper left 3× 3 matrix of a 4× 4 matrix:

R =

 R3×3
0
0
0

0 0 0 1


The important thing to note is that the w coordinate is unaffected. The same is true of a
scaling matrix which looks as follows

S =


sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1


where sx, sy, and sz are the scaling factors along each axis. Finally, a translation matrix
looks as follows

T =


1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1


where t = [tx ty tz]T is the translation vector.

Figure 4: These three images show the significance of the order of transformations. To the
left, the box has been scaled, rotated, and translated. In the middle it has been rotated,
scaled, and translated. To the right it has been translated, scaled, and rotated. The
individual transformations are the same in all three cases. The scaling scales one axis by
2.0, the rotation rotates by 45 degrees, and the translation is by 1.5 units along one axis.

Transformations are concatenated by multiplying the matrices together, but matrix
multiplication does not commute. This means that the result is not invariant with respect
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to the order of the transformations. For instance, scaling followed by rotation and finally
translation is not the same as translation followed by rotation and then scaling – even if
the individual transformations are the same. Normally, we first scale the object and then
rotate it and finally translate it. Using a different order typically leads to surprising and
unwanted results, but sometimes we do need a different order. The importance of order of
transformations is shown in Figure 4.

The model transformation is unique in that it changes per object. Every object needs
its own model transform whereas the entire image is almost always drawn with just one
view transform (described in the next section) and one type of projection.

We often need to transform in a hierarchical fashion. One way of understanding this is
that we could use one set of model transformations to put together a few primitives into a
new object which is then transformed into world space with a second model transformation.
For instance, the upper and lower arm as well as the two fingers of the robot in Figure 3
are nearly identical compositions of a sphere and a box. Thus, we could create a robot-arm
segment object by scaling and translating a cube and a sphere and then, subsequently,
create four instances of this object, scaling, rotating and translating each to the proper
position.

3.2 View Transformation

The view transformation is a translation followed by a rotation. The translation moves
the scene so that the camera is at the origin, and the rotation transforms the centerline of
the projection into the negative Z axis. This rotation could in principle be computed by a
composition of basic rotations, but is much more convenient to simply use a basis change
matrix.

Say the user has specified the camera location, e, the direction that the camera points
in (i.e. line of sight), d, and an up vector, u. The up vector points in the direction whose
projection should correspond to the screen Y axis. See Figure 5.

Based on these three vectors, we need to compute the translation and rotation of the
camera. The camera translation is simply −e since translating along this vector will move
the camera to the origin. To compute the rotation, we need to compute a basis for the eye
coordinate system. This basis will be formed by the three vectors cx, cy, and cz. The last
one is fairly easy. Since the camera looks down the negative Z axis, we have that

cz = −d (1)

We need to compute a cx so that it will correspond to the window X axis, which means
that it should be orthogonal to the window Y axis and hence the up vector:

cx = d× u (2)
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cx

cy

cz

e

d

u

X

Y

Z

Figure 5: The vectors d, e, and u which are needed to compute the basis (in world
coordinates) for the eye coordinate system as well as the basis itself (cx,cy,cz)

Finally, cy should be orthogonal to the two other vectors, so

cy = cz × cx (3)

These three vectors are normalized to length 1. Now, we can write down the viewing
transformation

V =


cxx cxy cxz 0
cyx cyy cyz 0
czx czy czz 0
0 0 0 1




1 0 0 −ex
0 1 0 −ey
0 0 1 −ez
0 0 0 1

 (4)

Note that in the OpenGL API there is only a single modelview transformation matrix
which we will denote MV. In other words, the matrices for model transformation and view
transformation are multiplied together. This makes sense because we need the vertices of
the object we are rendering in eye coordinates (after model and view transformation) since
this is where we compute lighting. However, we rarely need the points in world coordinates
and saving a matrix vector multiplication for all vertices can be a big advantage.

3.3 Projection

If we think of computer graphics as rendering a virtual scene with a virtual camera, we
obviously think of projections as mappings from a 3D world onto a 2D image plane. How-
ever, we can perform two different kinds of projections: Orhtographic and perspective. In
orthographic projections, the viewing rays which connect a point in space to its image in
the image plane are parallel and also orthogonal to the image plane. In perspective, there
is a center of projection, and all viewing rays emanate from that point. In fact, there is
a third type of projection, which we will not cover in detail, namely oblique projections
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where the rays are parallel but not orthogonal to the image plane. The various type of
projections are illustrated in Figure 6.

Figure 6: From left to right, this figure illustrates orthographic, perspective, and oblique
projections.

While projections in a sense do reduce dimension, this happens only when we throw
away the Z value, and, in fact, we often care a lot about the Z value in computer graphics,
not least because the Z value (or depth) is used to depth sort fragments as discussed
in Section 4.4. Thus, it makes sense to see the projections (parallel or perspective) as
mappings from a view volume in eye space to a volume in normalized device coordinates
(NDC). The eye space volume is either a rectangular box if we are doing parallel projection
or a pyramid with the top cut off if we are doing perspective. In either case, the view volume
is delimited by six planes which are known as the near, far, top, bottom, left, and right
clipping planes.

While the volume in eye coordinates can have different shapes, the projection always
maps it into a cube of side length two centered at the origin. In other words, normalized
device coordinates are always in the same range.

3.3.1 Orthographic Projection

We can express an orthographic projection using the following matrix

O =


2
r−l 0 0 − r+l

r−l
0 2

t−b 0 − t+b
t−b

0 0 − 2
f−n −f+n

f−n
0 0 0 1


where r, l, t, b, f, n are the maximum and minimum X, Y, and Z values denoted right, left,
top, bottom, far, and near. The result of multiplying an eye space point onto O is a point
in normalized device coordinates. Observe that if pe = [r t −f 1]T , the point in normalized
device coordinates is

pn = pc = Ope = [1 1 1 1]T
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and likewise for the other corners of the view volume. Hence, it is easy to verify that this
matrix does map the view volume into a cube of side length two centered at the origin.
Note that there is no difference between clip and normalized device coordinates in this case
since w = 1 both before and after multiplication onto O.

It may be surprising that Z is treated differently from X and Y (by flipping its sign)
but remember that we are looking down the negative Z axis. However, we would like Z
to grow (positively) as something moves farther away from the camera. Hence the sign
inversion.

Why look down the negative Z axis in the first place? The answer is simply that this is
necessary if we want the normal right handed coordinate system in window space to have
the familiar property that the Y axis points up and the X axis points to the right. For an
illustration, please refer to Figure 7.

After parallel projection, the final step is viewport transformation which is described
in Section 3.4.

X

-Z

Z

Y

Figure 7: A normal right handed coordinate system. Note that we need to look down the
negative Z axis if we want the Y axis to point up and the X axis to point to the right.

3.3.2 Perspective Projection

In perspective, things far away appear smaller than things which are close. One way of
looking at this is that we need to compress the part of the view volume which is far away.
Since the projection always maps the view volume into a cube, this gives an intuitive
explanation of why the view volume is shaped like a pyramid with the apex in the eye and
its base at the far plane as shown in Figure 8.
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(1,1)

(-1,-1)

Z

X

αα

Figure 8: This 2D figure illustrates the perspective projection (including perspective di-
vide). The view frustum is shaped like a pyramid with the top cut off at the near plane n
and the bottom cut at the far plane f. The field of view angle, α determines how pointy
the frustum is. The perspective projection maps the pyramidal frustum to a cube of side
length two, centered at the origin. Note that as the frustum is transformed into a cube,
the regular pattern is skewed, but straight lines map to straight lines.

In computer graphics, we often use the following matrix for perspective projection

P =


A cot α2 0 0 0

0 cot α2 0 0
0 0 n+f

n−f
2nf
n−f

0 0 −1 0

 (5)

where A is the aspect ratio, α is the field of view angle (in the Y direction), and n and
f are the near and far clipping planes, respectively. The terms are illustrated in Figure 8
except for A which is the ratio of the width to the height of the on screen window. Now,
we compute clip coordinates by

pc = Ppe

Note that P does map the view volume into a unit cube in homogeneous coordinates, but
w is different from 1 for points in clip coordinates, so it is only after w division that the
corners look like the corners of a cube. Meanwhile, we first perform clipping.

3.3.3 Clipping

After multiplying a point onto the projection matrix it is in clip coordinates. Not sur-
prisingly, this is where clipping occurs. If our triangle is entirely inside the view volume
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it is drawn as is. If it is outside, it is discarded. However, if the triangle intersects the
view volume, we need to clip it to the volume. Points inside the view volume fulfill the
inequalities

−wc ≤ xc ≤ wc
−wc ≤ yc ≤ wc
−wc ≤ zc ≤ wc

(6)

If one divides these inequalities with wc it becomes clear that this is simply a test for
inclusion in the NDC cube performed in homogeneous coordinates.

3.3.4 W divide

The final step of the perspective projection is the w divide which takes the point from clip
to normalized device coordinates.

pn =
1
wc

pc =
1
wc


xc
yc
zc
wc


Thus, the full perspective transformation consists of first multiplying eye coordinate points
onto P and then performing the perspective divide. This full transformation is illustrated
in Figure 8. Note that although it is is not linear due to the division, straight lines are
transformed into straight lines, and the pyramidal view volume is transformed into the
same cube as the view volume in an orthogonal transformation.

3.4 Viewport Transformation

The viewport transformation takes points from normalized device coordinates to window
coordinates. Given a window of dimensions W ×H, the viewport transformation is simply
a scaling and a translation. It can be written as a matrix, but normally we just write it
directly:

pp =

 W xn+1
2

H yn+1
2

zn+1
2

 (7)

After viewport transformation, the point is in coordinates which correspond to a point
in pixel coordinates inside the framebuffer. Thus, if we have three vertices in window
coordinates, we are ready to assemble the corresponding triangle and rasterize it.

4 Triangle Rasterization and the Framebuffer

Triangle rasterization is the process of turning triangles into pixels. This is arguably the
most important function of a graphics card. The basic principle is simple: For a given
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triangle, we need to find the set of pixels that should represent the triangle in the screen
window. The pixels are written to the so called framebuffer, which is simply an area of
the graphics card memory that is used for intermediate storing of images which later get
displayed on the monitor. A basic framebuffer contains a color buffer with red, green,
and blue channels each of, typically, eight bit. This means that the color of a pixel is
represented by 24 bits for a total of more than 16 million different colors which is usually
sufficient. However, we often need an additional alpha channel in the color buffer which
may be used to indicate transparency. In addition to the color buffer, we frequently need a
depth buffer to resolve whether an incoming fragment is in front of or behind the existing
pixel. Additional buffers are sometimes needed. For instance a stencil buffer can be used
to mark regions of the window which should not be overwritten. The number of buffers
and the number of bits per pixel depends on the mode of the graphics card, and usually
graphics cards support a range of modes.

4.1 Rasterization

It is important to emphasize that a pixel is drawn if its center is inside the triangle.
Confusingly, in window coordinates, the pixel centers are not the integer positions, say
[72 33]. This is because we divide the window space into little pixels which can be regarded
as squares. If the window lower left corner is at [0 0] and pixels are of unit side length, it
is clear that their centers are at the grid points in a grid which is shifted by half a unit
in the X and Y directions. Thus, using the same example, the point we would check for
inclusion in a triangle is [72.5 33.5].

A simple way of rasterizing a triangle would be to use the interpolation methods de-
scribed below to check for each pixel whether it is included in the triangle. A simple
optimization would be to check only pixels inside the smallest rectangle containing the
triangle. Note that graphics cards use faster and highly optimized methods which are not
always published and in any case beyond the scope of this introductory text. However,
one important yet basic optimization is to use coherence: We can precompute a number of
parameters which then do not have to be computed in the inner loop of the rasterization.
In the context of triangle rasterization, this is called triangle setup.

However, testing whether a pixel is inside a triangle is not all: We also need to find
the color for each pixel. This is often called fragment shading, and it can be done in many
ways. However, the simple solution is that we first shade the vertices – i.e. compute a color
per vertex. In fact this is done rather early in the pipeline in the vertex processing, but we
will discuss shading later. Presently, we simply assume that we know the color per vertex
and need to find the color per pixel. We do so by, for each pixel, taking a weighted average
of the vertex colors where the weight for each vertex depends on the proximity of the pixel
to that vertex. This is called interpolation and is the topic of the next two subsections.
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4.2 Interpolation of Attributes

α

f0

f1

1 − α

f

p0 p1q

Figure 9: Linear interpolation between points p0 and p1 on the real line. The dotted lines
show (1 − α)f0 and αf1 whereas the solid line connecting (p0, f0) and (p1, f1) is the sum
((1− α)f0 + αf1) and the line on which the interpolated values lie.

We typically have a number of attributes stored per vertex - for instance a vertex color,
normal, or texture coordinates. Informally, we want to set the pixel color to a weighted
average of the vertex colors where the weight of a vertex depends on how close the pixel is
to the vertex (in window coordinates).

In practice, we always use linear interpolation to obtain the pixel values of some at-
tribute from the values at the vertices. In 1D, linear interpolation is very easy, especially
if the data points are at unit distance. Say, we have two 1D vertices p0 and p1 at unit
distance apart and a point q on the line between them. We wish to interpolate to q as
illustrated in Figure 9. It should be clear that if α = q − p0 then

f = (1− α)f0 + αf1

interpolates the value in a linear fashion, i.e. the interpolated values lie on a straight line
between the two data points. We can write this in a somewhat more general form

f =
p1 − q
p1 − p0

f0 +
q − p0

p1 − p0
f1

which takes into account that the points may not be at unit distance.
Now, if we interpolate in a 2D domain (the triangle) the data points should no longer

lie on a line but in a plane. Otherwise the setup is similar. Assume that we have a triangle
with vertices labelled 0, 1, and 2. The corresponding 2D window space points are p0, p1,
and p2, the attributes we wish to interpolate are f0, f1, and f2. The function

A(p0,p1,p2) =
1
2

(p1 − p0)× (p2 − p0)

16



computes the signed area of the triangle given by the points p0,p1, and p2. Note that
× is the cross product of 2D vectors in this case, i.e. a determinant. According to this
definition, the area is positive if the vertices are in counter clockwise order and negative
otherwise. Finally, the point to which we wish to interpolate (the pixel center) is denoted
q.

p0

p1 p2

q

p0

p1 p2

q

Figure 10: This figure illustrates the triangles and points involved in computing barycentric
coordinates on the left. On the right an alternative scheme for linear interpolation where
we interpolate using 1D linear interpolation to intermediate points on the same horizontal
line and then interpolate to q along the horizontal line.

We can now compute the three so called barycentric coordinates

b = [b0, b1, b2]T =
1

A(p0,p1,p2)
[A(q,p1,p2), A(p0,q,p2), A(p0,p1,q)]T

Interpolating the f quantity (e.g. pixel color), we simply compute

fq = b0f0 + b1f1 + b2f2 (8)

As we can see from Figure 10, the barycentric coordinates must sum to 1. In other
words, we can compute b2 = 1− (b0 + b1).

If q is inside the triangle, the barycentric coordinates are always positive. If q is outside
the triangle, the barycentric coordinates still sum to 1, but now the vertices of at least one
of the triangles in Figure 10 are not in counter clockwise order, and the corresponding
area(s) become negative. In other words, if the pixel center is outside the triangle, at least
one of the barycentric coordinates is < 0.

We could also interpolate linearly in other ways. For instance, we could interpolate to
two intermediate points along the p0p1 and p0p2 edges using 1D linear interpolation and
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then do another linear interpolation along the line segment between the two intermediate
points to the final location. this scheme is also illustrated in Figure 10. Assuming a row of
pixels lie on the horizontal line, this scheme could be more efficient than using barycentric
coordinates.

Never the less, barycentric coordinates are a very general and useful tool in computer
graphics and also in image analysis. Often we have data associated with vertices of a
triangle, and we wish to interpolate this data. Barycentric coordinates are not just for
triangles but more generally for simplices. In a given dimension, a simplex is the simplest
geometric primitive that has any area (or volume). In 1D it is a line segment, and in
fact linear interpolation as described above is simply the 1D variant of interpolation with
barycentric coordinates. In 3D, we can use barycentric coordinates to interpolate between
the four vertices of a tetrahedron.

4.3 Perspective Correct Interpolation

Unfortunately, there is a problem when we see things in perspective. The simplest possible
example, a line segment in perspective, is shown below.

Image plane

Eye

Figure 11: A line in perspective. The line is divided into equal segments, but these equal
segments do not correspond to equal segments in the image. Thus, linear interpolation in
object coordinates and image coordinates does not produce the same results.

Put plainly, stepping with equal step length along the 3D line does not correspond to
taking equal steps along the line in the image of the line. If we fail to interpolate in a
perspective correct fashion (simply use screen space linear interpolation), the result is as
seen in Figure 19.
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To perform perspective correct interpolation, the formula we must use is

fq =
b0

f0
w0

+ b1
f1
w1

+ b2
f2
w2

b0
1
w0

+ b1
1
w1

+ b2
1
w2

. (9)

In the following, we shall see why.

4.3.1 The Details of Perspective Correct Interpolation

To perform perspective correct linear interpolation, we need to first express linear inter-
polation in eye coordinates (before perspective projection) and then compute what the
eye space interpolation weights should be in terms of the window space weights. That is
not completely trivial, however, so to simplify matters, we will only consider the simplest
possible case which is shown in Figure 12

w=1

W

X

x0

x1

w0x0

w1x1

[(1-β)w0x0+βw1x1, (1-β)w0+βw1]

[(1-α)x0+αx1, 1]

Figure 12: A line in perspective. The line is divided into equal segments, but these equal
segments do not correspond to equal segments in the image. Thus, linear interpolation in
object coordinates and image coordinates does not produce the same results.

We consider only the X and W axes and observe what happens precisely at the perspec-
tive division which takes us from clip coordinates (CC) to normalized device coordinates
(NDC). We perform linear interpolation in both types of coordinates. The weight is α in
NDC and β in CC. Given a point on a line in CC and its projected image in NDC, we
want to find the equation which expresses β in terms of α. We start by writing down the
equation which links the point in CC and its projection in NDC:

(1− α)x0 + αx1 =
(1− β)x0w0 + βx1w1

(1− β)w0 + βw1
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The interpolation can also be written

α(x1 − x0) + x0 =
β(x1w1 − x0w0) + x0w0

β(w1 − w0) + w0

Moving x0 to the other side, multiplying it with the denominator in order to have just one
fraction, removing terms that cancel, and reordering, we finally get:

α(x1 − x0) =
βw1(x1 − x0)

β(w1 − w0) + w0

We now divide by (x1 − x0) and solve for β. Rewriting, we obtain

β =
αw0

w1 − α(w1 − w0)
(10)

Now, we are nearly done. Say we have some quantity, f , associated with the end points
that we want to interpolate to the given point. Linearly interpolating in CC amounts to

f = β(f1 − f0) + f0

Plugging in (10),
f =

αw0

w1 − α(w1 − w0)
(f1 − f0) + f0

which is straight forward to rewrite to

f =
(1− α) f0w0

+ α f1
w1

(1− α) 1
w0

+ α 1
w1

.

What this mathematical exercise shows us is that to interpolate in a perspective correct
fashion, we need to first divide the data that we want to interpolate with the w values at
the corresponding vertices and we need to divide the interpolated value with the linearly
interpolated inverse w values. This scheme also works for interpolation with barycentric
coordinates, and it is now possible rewrite (8) to take perspective into account

fq =
b0

f0
w0

+ b1
f1
w1

+ b2
f2
w2

b0
1
w0

+ b1
1
w1

+ b2
1
w2

.

The above equation is used to interpolate almost all vertex attributes and it is par-
ticularly important for texture coordinates. The one exception is depth. A triangle in
object coordinates maps to a (planar) triangle in window coordinates. Consequently, the
window coordinate Z values can be linearly interpolated over the interior of the triangle
with no need for perspective correction, and it is indeed the linearly interpolated window
coordinate Z value which is stored in the depth buffer. The depth buffer is covered in more
detail in the next section.
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Figure 13: The result of drawing a box with depth test (on the left) and without depth
test (on the right).
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4.4 Depth Buffering

When we are ready to write the color and depth value of a fragment to the framebuffer,
there is one test which we nearly always want to perform, namely the depth test.

The result of enabling and disabling the depth test is shown in Figure 13. Without the
depth test it is clear that parts of the cube which are visible have been covered by parts
which should not have been visible. Without depth testing, the pixels which we see are
those that have been drawn last.

In this particular case, although depth testing solves the problem, it is actually not
needed: We could simply cull the faces which point away from the camera, and graphics
hardware will do that for us. However, for bigger scenes or just objects which are not
convex, we do need depth testing unless we are to draw the model in strict back to front
order.

Figure 14: If the near plane is very close to the origin, the depth buffer precision near the
rear end of the view volume becomes very poor. The result is depth fighting artefacts. In
this case the blue cube is behind the red cube but shows through in several places.

Depth testing works well for most purposes, but one issue is the fact that the precision
is not linear. This is easy to understand when we remember that it is the window space
depth value which is stored and not the eye space depth value. Window space depth is
just a scaling of normalized device coordinates depth which is clearly very compressed near
the far end of the transformed frustum (cf. Figure 8). In fact, it is more scaled the closer
to the origin the near plane lies. This means that we should always try to push the near
plane as far away as possible. Having the far plane as close as possible is also helpful, but
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to a lesser degree.
In cases where the near plane is too close to the origin, we see a phenomenon known

as depth fighting or Z fighting. It means that the depth buffer can no longer resolve which
pixels come from objects that are occluded and which come from objects that are visible.
The resulting images often look like holes have been cut in the objects that are supposed
to be closer to the viewer. These artefacts are illustrated in Figure 14.

5 Per Vertex Shading

So far, we have not discussed how to compute the colors that finally get written to the
frame buffer. However, we have discussed interpolation, and the traditional way of shading
a pixel is to first compute the color per vertex and then interpolate this color to the
individual pixels. This is the method we describe in the following, and it was the only way
of shading before programmable graphics hardware. With the advent of programmable
shading, per pixel shading is often the best solution because it gives more accurate results.
However, the difference in implementation is slight, since in per pixel shading we interpolate
positions and vectors before computing lighting, and in per vertex lighting, we interpolate
the computed color.

In either case, in real-time graphics, only local illumination from a point light source
is usually taken into account. Local means that objects do not cast shadows, and light
does not reflect between surfaces, i.e. illumination comes only from the (point) light source
and is not influenced by other geometry than the vertex at which we want to compute the
shaded color.

We compute the color of a vertex in eye coordinates. This choice is not arbitrary.
Remember that (at least in OpenGL) we transform vertices directly from object to eye
coordinates with the modelview matrix. Moreover, the shading depends on the relative
position of the camera and the vertex. If we had chosen object coordinates instead, we
would have to transform the light position and direction back into object coordinates. Since
the modelview transform changes frequently, we would have to do this per vertex.

Instead, we now have to transform the surface normal, no, into eye coordinates (ne).
The normal is a 3D vector of unit length that is perpendicular to the surface and specified
per vertex. Recall that perpendicular means that for any other vector vo in the tangent
plane of the point, we have that

vo · no = vTo no = 0

A bit of care must be taken when transforming the normal into eye coordinates. Since it
is a vector and not a point, we need to set w = 0. This means that the vector represents a
3D vector as opposed to a point. Conveniently, if we simply set w = 0 in the homogeneous
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representation of the normal, and multiply with the modelview matrix

ne = MVno = MV


x
y
z
0


we get just the rotation and scaling components of the transformation and not the transla-
tion part. Unfortunately, this only works if the transformation does not contain anisotropic
scaling. If we scale the Y axis more than the X axis, for instance to transform a sphere
into an ellipsoid, the normals are no longer perpendicular to the surface.

Assume we have a pair of points p1
o and p2

o in object coordinates. If the vector from
p1
o to p2

o is perpendicular to the normal, we can express this relationship as follows

(p1
o − p2

o)
Tno = 0 .

Let us say we obtained these points by inverse transformation from eye space with the
inverse modelview matrix:

((MV)−1p1
e − (MV)−1p2

e)
Tno = 0

which is the same as
(p1

e − p2
e)
T ((MV)−1)Tno = 0

Thus, we can transform the normal by, ((MV)−1)T , the transpose of the inverse. This is
guaranteed to work if the modelview matrix is non-singular (i.e. has an inverse). As a final
step the tranformed normal is renormalized by dividing it with its own length. This step
can be omitted if we know that the modelview transform does not include scaling.

As mentioned, we compute shading using a point light source. Thus, another thing that
needs to be transformed is the light source position which we also need in eye coordinates.
It is often a source of confusion how one specifies a light source that is stationary with
respect to the scene or with respect to the camera. In fact, the rules are simple, and we
can break it down into three cases:

• If we specify the light source position directly in eye coordinates, then the light
clearly does not move relative to the camera – no matter what model and view
transformations we apply to the scene.

• If we specify the light source in world coordinates, i.e. applying just the view trans-
formation, the result is a light source that is fixed relative to the scene in world
coordinates.

• If we want a dynamically moving light source, we can add further modelling trans-
formations which move the light relative to the scene.
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5.1 Phong Illumination Model

Now we know all the things we need in order to compute the illumination at a vertex. The
following are all 3D vectors (we forget the w coordinate).

• The eye (or camera) position is the origin [0 0 0].

• The vertex position is pe = MVpo.

• The normal ne = ((MV)−1)Tno.

• The light source position ple.

To simplify things in the following, we drop the e subscript which indicates that points or
vectors are in eye space coordinates. Also, we will not need homogeneous coordinates, so
vectors are just 3D vectors in the following.

From the position of the vertex, we can easily compute the normalized view vector
pointing towards the eye

v = − p
‖p‖ . (11)

From the light source position we can compute the normalized direction towards the light
source

l = − pl− p
‖pl− p‖ . (12)

The vectors involved in lighting computation are shown in Figure 15.

n l

v

r

h

X

−Z

Figure 15: The vectors needed to compute shading according to the Phong and Blinn-
Phong illumination model.
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The simplest contribution to the illumination is the ambient light. The amount of
“reflected” ambient light is

La = kaIa ,

where Ia is the intensity of ambient light in the environment and ka is a coefficient which
controls how much ambient light is reflected. Ambient light is an extremely crude approx-
imation to global illumination. Global illumination is the general term used for light that
is reflected by other surfaces before reaching the point from which it is reflected into the
eye. For instance, if we let the light reaching the walls of a room illuminate the floor,
we take global illumination into account. Global illumination is generally very expensive
to compute and in real-time graphics, we mostly use crude approximations. The ambient
term is the crudest possible such approximation, and it is a bit misleading to say that
ambient light is actually reflected. But, without ambient light and reflection of ambient
light, a surface will be completely dark unless illuminated by a light source which is often
not what we want. However, from a physical point of view, ambient light is so crude that
it does not really qualify as “a model”.

The contribution from diffuse reflection is somewhat more physically based. An ideal
diffuse surface reflects light equally in all directions; the intensity of light we perceive does
not depend on our position relative to the point of reflection. On the other hand the
amount of reflected light does depend on the angle, θ, between the light direction and the
surface normal. If we denote the amount of diffusely reflected light Ld, then

Ld = kd cos(θ)Id = kd(n · l)Id ,

where kd is the diffuse reflectance of the material and Id is the intensity of the light source.
The diffuse reflection gradually decreases as we tilt the surface away from the light source.
When the light source direction is perpendicular to the normal, the contribution is zero.

Surfaces are generally not just diffuse but also have some specular component. Unlike
a diffuse reflection where light goes equally in all direction, a specular reflection reflects
light in approximately just one direction.

This direction, r, is the direction toward the light source reflected in the plane perpen-
dicular to the normal, n,

r = 2(l · n)n− l .

The specular contribution is
Ls = ks(r · v)pIs ,

where p is the Phong exponent or shininess. If this exponent is large, the specular reflection
tends to be very sharp. If it is small it is more diffuse. Thus, p can be interpreted as a
measure of how glossy or perfectly specular the material is. Another interpretation is that
it provides a cue about the size of the light source. Is is the light intensity that is subject
to specular reflection. Of course, in the real world we do not have separate specular and
diffuse intensities for a light source but this gives added flexibility.
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It is important to note that there is a different way (due to Blinn) of computing the
specular contribution. The half angle vector h is defined as the normalized average of the
view and light vectors

h =
v + l
‖v + l‖

using the half angle vector, we get this, alternative, definition of the specular contribution:

Ls = ks(h · n)pIs .

The advantage of this formulation is that the half angle vector is often constant. In many
cases, we assume that the direction towards the viewer is constant (for the purpose of
lighting only) and that the direction towards the light source is also constant (if the light is
simulated sunlight this is a sound approximation). In this case, v and l are both constant,
and as a consequence so is h. It is our understanding that graphics hardware uses Blinn’s
formulation since setting the view and light vectors constant seems to improve frame rate
perceptibly. If we combine the specular, diffuse, and ambient contributions we get the

Figure 16: From left to right: The contributions from ambient (almost invisible), diffuse,
and specular reflection. On the far right the combination of these lighting contributions.

following equation for computing the color at a vertex

L = La + Ld + Ls = kaIa + kd(n · l)Id + ks(h · n)pIs (13)

Figure 16 illustrates these terms and their sum. Of course, if we only use scalars for
illumination the result is going to be very gray. Instead of scalar coefficients ka, kd, and ks
we can use RGB (red, green, blue) vectors which represent the ambient diffuse and specular
colors of the material. Likewise, Ia, Id, and Is are RGB vectors containing the color of the
light.

6 Texture Mapping

Having computed a color per vertex using the Phong illumination, we could simply shade
our pixels by interpolating this color in the way previously described. In many cases, we
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would like to add a bit more detail, though. Figure 17 shows the effect of adding texture.
There is a dramatic difference between a smooth surface which has been shaded and the
same surface with texture added. For this reason, texture mapping has been a standard
feature of graphics hardware since the beginning.

+

Figure 17: This figure illustrates the principle of texture mapping. Texture stored in a
planar image is mapped onto the mesh.

In normal parlance the word texture refers to the tactile qualities of an object, but
in the context of computer graphics, texture has a particular meaning which is the only
meaning used below. In CG, textures are simply images which we map onto 3D models.

The principle behind the mapping is simple: Just like a vertex has a geometric position
in 3D object space, it also has a position in texture space indicated via its texture coordi-
nates. Texture coordinates are usually 2D coordinates in the range [0, 1]× [0, 1] or recently
more often [0,W ] × [0, H] where W and H refer to the width and height of the texture
image.

When a triangle is rasterized, these texture coordinates are interpolated along with the
other attributes such as the shaded color computed for the vertices. We then look up the
texture color in the texture image as illustrated in Figure 18.

It is very important that the texture coordinates are interpolated in a perspective
correct way. Otherwise, we get very peculiar images like the one shown in Figure 19.

Once we have looked up a texture color, we can use it in a variety of ways. The simplest
is to simply set the pixel color to the texture color. This is often used in conjunction with
alpha testing to do billboarding. A billboard is simply an image which we use to represent
an object. Instead of drawing the object, we draw an image of the object as illustrated
in Figure 20. For an object which is far away, this is sometimes acceptable, but it is
necessary to mask out those pixels which correspond to background. This masking is done
by including an alpha channel in the texture image where alpha is set to 0 for background
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Figure 18: Texture coordinates provide a mapping from the geometric position of a vertex
to its position in texture space. When a triangle is drawn, we can interpolate its texture
coordinates to a given pixel and hence find the corresponding position in the texture image.

Figure 19: Perspective correct interpolation is important for texture coordinates. On the
right we see what happens if the texture coordinates are interpolated linearly in window
space.

pixels and 1 for foreground pixels. Alpha testing is the used to remove pixels with value 0
since graphics hardware can filter pixels based on their alpha value and thus cut out the
background parts of a texture image as illustrated in Figure 20.

The typical way of using the texture color, however, is to multiply the shading color
with the texture color. This corresponds to storing the color of the material in the texture,
and it is this mode that is used in Figure 17.

We can do many other things with texture - especially with the advent of programmable
shading (cf. Section 7).

6.1 Interpolation in Texture Images

Of course, the interpolated texture coordinates usually lie somewhere between the pixels in
the texture image. Consequently, we need some sort of interpolation in the image texture.

The simplest interpolation regards a texel (pixel in texture image) as a small square,
and we simply pick the pixel color corresponding to what square the sample point lies in.
If we regard the texture image as a grid of points where each point is the center of a texel,
this is nearest neighbor interpolation. Unfortunately, the texture image is usually made
either bigger or smaller when it is mapped onto the 3D geometry and then projected onto
the screen. If the texture image is magnified, the result will be a rather blocky image.
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Figure 20: There are no 3D models of trees in this image. Instead a single tree was drawn
in an image which is used as billboard. This way of drawing trees is a bit dated. Nowadays
one would use many more polygons to define the tree.

This can be fixed through interpolation. GPUs invariably use bilinear interpolation1

or a method based on bilinear interpolation. Bilinear interpolation is a simple way of
interpolating between values at the corners of a square to a point inside the square. It is
really a composition of three linear interpolations:

f = (1− β)((1− α)f0 + αf1) + β((1− α)f2 + αf3) (14)

where fi are the quantities we interpolate and the weights are α and β. See Figure 21 for
an illustration.

It the texture image is magnified, bilinear interpolation is about the best we can do.
However, if the texture is minified, i.e. made smaller, both nearest neighbor and bilinear
interpolation give very poor results. This is illustrated in the two leftmost images of
Figure 22. The problem is really aliasing - high frequencies in the texture image which
lead to spurious low frequency details in the rendered image. Informally, when a texture
is made very small, we skip texels when the image is generated and this can lead to the
strange patterns shown in the figure.

The solution is to use a smaller texture which is blurred (or low pass filtered) before it
is subsampled to a resolution where the texels are of approximately the same size as the

1Despite linear being part of the name, bilinear interpolation is really quadratic. This need not detain
us, however.
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α 1 − α

β

1 − β

Figure 21: In bilinear interpolation, we interpolate between four data points which lie on a
regular grid. It is implemented in terms of three linear interpolations. We first interpolate
to two intermediate points and then between these two intermediate points.

pixels.

Figure 22: From left to right: Nearest texel, bilinear interpolation, mipmapping, and
anisotropic interpolation.

In practice, we cannot compute this right-sized texture on the fly. Instead, graphics
hardware precomputes a pyramid of textures. The bottom (zero) level is the original
texture. Level one is half the size in both width and height. Thus one texel in level one
covers precisely four texels in level zero, and the level one pixel is simply set to the average
color of these four texels. If we do this iteratively, the result is a pyramid of textures
ranging from the original texture to one with a single texel. Of course, this requires the
original texture to have both width and height which are powers of two. However, it is
not important that the images are square. For instance if the image has power-of-two
dimensions but is twice as broad as high, say 128×64, we end up with two pixels instead
of one in the highest level but one and then average these two pixels to get the topmost
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level. Arbitrary size textures are rescaled before mipmap computation.
When using mipmaps, we first find the place in the texture where we need to do a

look up and also the approximate size of a pixel at that point projected into texture space.
Based on the size, we choose the two levels in the mipmap whose texels are closest to the
size of a projected pixel (one above and one below), interpolate separately in each image,
and then interpolate between these two levels in order to produce the final interpolation.
In other words, we perform two bilinear interpolations in separate mipmap levels followed
by an interpolation between levels for a total of seven interpolations involving eight texels.
This is called trilinear interpolation.

6.1.1 Anisotropic Texture Interpolation

Mipmapping is a very important technique, but it is not perfect. As we see in Figure 22
mipmapping avoids the nasty artefacts of linear interpolation very effectively, but it also
introduces some blurring. The problem is that we rarely compress an image evenly in both
directions.

In Figure 19 left, we see the perspective image of a square divided into smaller squares.
Clearly these are more compressed in the screen Y direction than the X direction. Another
way of saying the same thing is that the pixel footprint in texture space is more stretched
in the direction corresponding to the screen Y direction. There is another illustration fo
the issue in Figure 23. A square pixel inside the triangle corresponds to a long rectangle
in texture space. Mipmapping does not solve the problem here because it scales the image

Figure 23: A single square pixel mapped back into texture space becomes a very stretched
quadrilateral (four sided polygon).

down equally in width and height. Put differently, if we use just one mipmap level when
taking a pixel sample, we will choose a level which is too coarse because the pixel appears
to have a big footprint in texture space, but we do not take into account that the large
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footprint is very stretched. The solution is to find the direction in which the pixel footprint
is stretched in texture space and then take several samples along that direction. These
samples are then averaged to produce the final value.

Effectively, this breakes the footprint of a pixel in texture space up into smaller bits
which are more square. These smaller bits can be interpolated at more detailed levels of the
mipmap pyramid. In other words, we get a sharper interpolation using anisotropic texture
mapping because we blur more in the direction that the texture is actually compressed. An
example of the result of anisotropic texture interpolation is shown in Figure 22 far right.

Clearly, anisotropic texture interpolation requires a big number of samples. Often, we
take 2, 4, 8, or 16 samples in the direction that the texture is compressed. Each of these
samples then use eight pixels from the mipmap. However, as of writing, high end graphics
cards are up to the task of running highly realistic video games using anisotropic texture
interpolation at full frame rate.

7 Programmable Shading

One of the first graphics cards was the Voodoo 1 from 3dfx Interactive, a company that was
later bought by NVIDIA. The Vodoo 1 did not perform many of the tasks performed by
modern graphics cards. For instance it did not do the vertex processing but only triangle
rasterization and still required a 2D graphics card to be installed in the computer.

Contemporary graphics cards require no such thing and in fact all the major operating
systems (Apple’s Mac OS X, Windows Vista, and Linux in some guises) are able to use
the graphics card to accelerate aspects of the graphical user interface.

However, the graphics cards have not only improved in raw power they have improved
even more in flexibility. The current pipeline is completely programmable, and the fixed
function pipeline which is largely what we have described till now is really just one possible
shader to run. In the following, we will use the word shader to denote a small program
which runs on the GPU. There are two main types of shaders which we can run

• Vertex shaders, which compute both the transformation of vertices and the compu-
tation of illumination as described in this text.

• Fragment shaders, which compute the color of a fragment often by combining inter-
polated vertex colors with textures.

These programs run directly on the graphics cards and they are written in high level
programming languages designed for GPUs rather than CPUs such as the OpenGL shading
language (GLSL), High Level Shading Language (HLSL), or C for Graphics (CG). The
first of these GLSL is OpenGL specific. HLSL and CG are very similar, but the former is
directed only at DirectX and the latter can be used with both OpenGL and DirectX.

Other types of programs besides vertex and fragment programs have emerged. Geom-
etry shaders run right after vertex shaders and for a given primitive (in general a triangle)
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the geometry shader has access to all the vertices of the triangle. This allows us to perform
computations which are not possible if we can see only a single vertex as is the case with
vertex shaders. In particular, we can subdivide the triangles into finer triangles - ampli-
fying the geometry. More recently, shaders which allow us to directly tessellate smooth
surface patches into triangles have become available.

The entire pipeline is now capable of floating point computations. This is true also in
the fragment part of the pipeline, which allows us to deal with high dynamic range colors.
This is extremely important since fixed point with eight bit gives us a very narrow range
of intensities to work with. if the light source is the sun it is less than satisfying to only
have 256 intensity levels between the brightest light and pitch black. With 16 or even 32
bit floating point colors, we can do far more realistic color computations even if the final
output to the frame buffer is restricted to eight bit fixed point per color channel due to the
limitations of most monitors.

It is also important to note that even if we have to convert to eight bit (fixed point) per
color channel for output to a screen displayed framebuffer, we do not have such a restriction
if the output is to a framebuffer not displayed on the screen. If we render to an off-screen
framebuffer, we can use 32 bit floating point per color channel – assuming our graphics
card supports it.

This is just one important aspect of off-screen framebuffers. In fact, the ability to
render to an off-screen framebuffer is enormously important to modern computer graphics,
since it has numerous applications ranging from non-photorealistic rendering to shadow
rendering. The reason why it is so important is that such an off-screen framebuffer can be
used as a texture in the next rendering pass. Thus, we can render something to an off-
screen framebuffer and then use that in a second pass. Many advanced real-time graphics
effects require at least a couple of passes using the output from one pass in the next.

7.1 Vertex and Fragment Shaders

The input to a vertex program is the vertex attributes. Attributes change per vertex and
are thus passed as arguments to the vertex program. Typical attributes are position,
normal, and texture coordinates. However, vertex programs also have access to other
variables called uniforms. Uniforms do not change per vertex and are therefore not passed
as attributes. The modelview and projection matrices, as well as material colors for shading
are almost always stored as uniforms. In recent graphics cards, the vertex program can
also perform texture lookup although this is not used in a typical pipeline. The mandatory
output from a vertex program is the transformed position of the vertex. Typically, the
program additionally outputs the vertex color and texture coordinates.

The vertices produced as output from the vertex shader (or geometry shader if used)
are assembled into triangles, and these triangles are then clipped and rasterized, and for
each pixel, we interpolate the attributes from the vertices. The interpolated attributes
form the input to the fragment shader. The fragment shader will often look up the texture

34



color based on the interpolated texture coordinates and combine this color with the color
interpolated from the vertices. The output from the fragment shader must be a color, but
it is also possible to output a depth value and other pixel attributes. Recent years have
seen the introduction of multiple rendering targets which allow us to write different colors
to each render target. Since we can only have one visible framebuffer, multiple render
targets are mostly of interest if we render to off-screen framebuffers.

7.2 Animation

Perhaps the first application of vertex shaders was animation. An often encountered bot-
tleneck in computer graphics is the transfer of data from the motherboard memory to the
graphics card via the PCI express bus. Graphics cards can cache the triangles in graphics
card memory, but if we animate the model, the vertices change in each frame. However,
with a vertex shader, we can recompute the positions of the vertices in each frame.

A very simple way of doing this is to have multiple positions for each vertex. When
drawing the object, we simply interpolate (linearly) between two vertex positions in the
shader. This provides a smooth transition.

Another common technique for GPU based animation is skeleton-based animation.
What this means is that we associate a skeletal structure with the mesh. Each vertex is
then influenced by several bones of the skeleton. We store (as uniforms) a transformation
matrix for each bone and then compute an average transformation matrix for each vertex
where the average is taken over all the matrices whose corresponding bones affect that
vertex.

7.3 Per pixel lighting

It is highly efficient to compute lighting per vertex, but it also introduces some artefacts.
For instance, we only see highlights when the direction of reflected light is directly towards
the eye. This could happen at the interior of a triangle. However, we compute illumination
at the vertices, and if the highlight is not present at the vertices the interpolated color will
not contain the highlight even though we should see it.

The solution is to compute per pixel lighting. To do so, we need to interpolate the
normal rather than the color to each pixel and then compute the lighting per pixel. This
usually produces far superior results at the expense of some additional computation.

7.4 Deferred Shading and Image Processing

As mentioned, it is enormously important that we can output to an off-screen framebuffer.
One application of this feature is that we can output an image containing data needed for
shading and do the shading in a second pass. For instance, we can output the position of
the fragment - i.e. the interpolated vertex position - and the vertex normal. With this
data, we can compute shading in a second pass. In the second pass, we would typically
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just draw one big rectangle covering the screen and for each pixel, we would look up the
position and normal in the texture produced by rendering to an off-screen framebuffer in
the first pass.

At first that might seem to simply add complication. However, note that not all frag-
ments drawn in the first pass may be visible. Some will be overwritten by closer fragments
that are later drawn to the same pixel. This means that we avoid some (per pixel) shading
computations that way. Moreover, the pixel shader in the initial pass is very simple. It just
outputs geometry information per pixel,. In the second pass, the geometry is just a single
rectangle. Consequently, all resources are used on fragment shading. It seems that this
leads to greater efficiency - at least in modern graphics cards where load balancing takes
place because the same computational units are used for vertex and fragment shading.

Moreover, we can use image processing techniques to compute effects which are not
possible in a single pass. A good example is edge detection. We can compute, per pixel,
the value of an edge detection filter on the depth buffer but also on the normal buffer. If a
discontinuity is detected, we output black. This can be used to give our rendering a toon
style appearance, especially if we also compute the color in a toon-style fashion as shown
in Figure 24.

8 Efficent Rendering

So far, we have only discussed how to render a single triangle. However, a modern graphics
card is able to render hundreds of millions of triangles per second (and output billions of
pixels). To actually get these numbers however, we have to be sensible about how we send
the data to the graphics card.

A pertinent observation in this regard is that most vertices are shared by several tri-
angles. A good rule of thumb is that six triangles generally share a vertex. In most cases,
we want to use the exact same vertex attributes for each of these six triangles. For this
reason, there is a cache (Sometimes called the transform and lighting (T&L) cache. C.f.
Figure 1)

To exploit this cache, however, we must be able to signal that the vertex we need is
one that was previously processed by vertex shading. There are two ways in which we can
do this: Using triangle strips or indexed primitives.

8.1 Triangle Strips

Figure 25 shows a triangle strip. To use triangle strips, we first need to inform the graphics
card that the geometric primitive we want to draw is not a triangle but a triangle strip.
Next, we send a stream of vertices, in the example from the figure, we send the vertices
labeled 0,1,2,3,4,5, and 6. In this case, the triangles produced are 012, 213, 234, 435, 456.
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Figure 24: A dragon rendered in two passes where the first pass outputs vertex position
and normal to each pixel. The second pass computes a toon style shading and the result
of an edge detection filter on both the per pixel position and per pixel normals. The result
is a toon shaded image where sharp creases and depth discontinuities are drawn in black.
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In other words, the graphics hardware always connects the current vertex with the edge
formed by the past two vertices, and the orientation is consistent.

Every time a triangle is drawn, the GPU only needs to shade one new vertex. The
other two are taken from cache.
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3

4

5

6

Figure 25: A triangle strip is a sequence of vertices where every new vertex (after the first
two vertices) gives rise to a triangle formed by itself and the two preceding vertices.

8.2 Indexed Primitives

Computing long strips of triangles that cover a model is not a computationally easy task.
Nor is it, perhaps, so important. Another way in which we can exploit the cache is to use
vertex arrays. In other words, we send an array of vertices to the graphics card and then
an array of triangles. However, instead of specifying the geometric position of each vertex,
we specify an index into the array of vertices.

This scheme can be used both with and without triangle strips (i.e. a strip can also
be defined in terms of indices). In either case, locality is essential to exploiting the cache
well. This is not different from any other scenario involving a cache. The longer we wait
before reusing a vertex, the more likely that it has been purged from the cache. Of course,
optimal use of the cache also means that we should be aware of what size the cache is.

8.3 Retained Mode: Display Lists, Vertex Buffers, and Instances

Efficient rendering does not only require our geometry information to be structured well
as we have just discussed. It also requires communication between the main memory and
the graphics card to be efficient.
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It is a bit old school to talk about immediate and retained mode, but these two opposite
notions are still relevant to understanding how to achieve efficient rendering.

In immediate mode, the triangles sent to the graphics card are immediately drawn,
hence the name. This can be extremely convenient because it is easier for a programmer to
specify each vertex with a function call than to first assemble a list of vertices in memory
and a list of triangles in memory and then communicate all of that to the graphics card.
Unfortunately, immediate mode is slow. A function call on the CPU side per vertex is
simply too costly. Moreover, sending the geometry every frame is also not a tenable
proposition. For this reason, and for all its convenience, immediate mode is not a feature
in Microsofts Direct3D API, OpenGL for embedded systems, and even deprecated (subject
to removal) in recent versions of the normal OpenGL API.

However, there is an easy fix to the problem, namely display lists. A display list
is essentially a macro which you can record. Through a function call, you instruct the
graphics API (only OpenGL in this case) that you want to record a display list. All
subsequent graphics commands are then recorded for later playback and nothing is drawn.
Another function call stops the recording. Finally, you can replay the display list with yet
another function call. This is very simple for the programmer, and display lists combined
with immediate mode is a powerful tool for efficient rendering since the display lists are
almost always cached in graphics card memory.

Unfortunately, a facility which allows us to record general graphics commands for later
playback appears to be somewhat difficult to implement in the graphics driver. Therefore,
display lists are also deprecated. Above, we briefly mentioned arrays of vertices and trian-
gles. That is now the tools used for efficient rendering. We need to store these arrays on
the graphics card for the best performance. For this reason, all modern graphics APIs sup-
ply functions which allow you to fill buffers which are subsequently transferred to graphics
card memory.

However, this only provides a facility for drawing a single copy of some geometric object
efficiently. Say I fill a buffer with a geometric model of a car, and I want to draw many
instances of that car in different position and different colors. This is where the notion
of instancing comes in. Instancing, which is also supported by all modern graphics APIs,
allows you to render many instances of each object in one draw call. Each object can
have different parameters (e.g. transformation matrix, material colors etc.) and these
parameters are stored in a separate stream. Essentially, what instancing does is re-render
the geometry for each element in the parameter stream.

9 Aliasing and Anti-Aliasing

Rendering can be seen as sampling a 2D function. We have a continuous function in a
bounded 2D spatial domain, and we sample this function at a discrete set of locations,
namely the pixel centers.
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When sampling, it is always a problem that the function might contain higher fre-
quencies than half of our sampling frequency, which, according to the Nyquist sampling
theorem, is the highest frequency that we can reconstruct.

While the Nyquist theorem sounds advanced, it has a very simple explanation. Con-
tinuous periodic functions which map a point in a 1D space (the line of real numbers) to
real numbers can be expressed as infinite sums of sine (and cosine) functions at increasing
frequency. This known as the Fourier series of the function. Now, for a given frequency of
a sine function, if we have two samples per period, we know the frequency of the function.
Consequently, if the Fourier series does not contain higher frequencies than half the sam-
pling frequency, we have two samples per period for every single sine function in the series,
and we can reconstruct the true continuous function from its Fourier series. See Chapter
6 of [5].

The sampling theorem generalizes to 2D (where we have 2D analogs of sine functions)
and explains why we would like to have images which are limited in frequency. That is
not possible in general, because the discontinuity in intensity between the triangle and
the background is a feature in the image which is unbounded in the frequency domain,
and when it is sampled and reconstructed we get artefacts - so called jaggies or staircase
artefacts where the triangle and background meet. This is illustrated in Figure 26.

Figure 26: The difference between no anti-aliasing on the left and anti-aliasing with 16
samples per pixel on the right.

Mipmapping is our solution for texture, but it works only for texture. If we were able
to low pass filter the edge producing a smoother transition before sampling, the edge would
look much better. Unfortunately, this is not possible in any practical way. However, what
we can do is to draw the triangle at a much higher resolution (say we draw an image twice
as wide and twice as high as needed) and then average groups of four pixels to produce a
single average pixel. This is known as supersampling. Supersampling would clearly produce
a fuzzy gray value instead of sharp discontinuities. It does not fix the problem, but it moves
the problem to higher frequencies where it is less visible.

Unfortunately, four samples per pixel are often not enough in spite of the fact that it
is much more expensive to compute.

Modern graphics hardware can use (often) up to sixteen samples per pixel. This leads
to much better results. Also, there are smarter ways of sampling than just producing
images at higher resolution. A crucial observation is that we only need the additional
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samples near edges and that we only need to sample geometry at super resolution since
mipmapping (and anisotropic interpolation) takes care of textures. These observations are
what led to multisampling which is the term for a family of supersampling methods that
only take the geometry into account and only near edges. When multisampling only a
single texture sample is generally used, and the fragment program is only run once.

10 Conclusions

This brief lecture note has only scraped the surface of real-time computer graphics. Hope-
fully, this is still sufficient to give you an overview of the basic principles and possibilities.
For more details, we refer you to the references below.
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