3 research outputs found

    Homomorphism complexes, reconfiguration, and homotopy for directed graphs

    Full text link
    The neighborhood complex of a graph was introduced by Lov\'asz to provide topological lower bounds on chromatic number. More general homomorphism complexes of graphs were further studied by Babson and Kozlov. Such `Hom complexes' are also related to mixings of graph colorings and other reconfiguration problems, as well as a notion of discrete homotopy for graphs. Here we initiate the detailed study of Hom complexes for directed graphs (digraphs). For any pair of digraphs graphs GG and HH, we consider the polyhedral complex Hom(G,H)\text{Hom}(G,H) that parametrizes the directed graph homomorphisms f:G→Hf: G \rightarrow H. Hom complexes of digraphs have applications in the study of chains in graded posets and cellular resolutions of monomial ideals. We study examples of directed Hom complexes and relate their topological properties to certain graph operations including products, adjunctions, and foldings. We introduce a notion of a neighborhood complex for a digraph and prove that its homotopy type is recovered as the Hom complex of homomorphisms from a directed edge. We establish a number of results regarding the topology of directed neighborhood complexes, including the dependence on directed bipartite subgraphs, a digraph version of the Mycielski construction, as well as vanishing theorems for higher homology. The Hom complexes of digraphs provide a natural framework for reconfiguration of homomorphisms of digraphs. Inspired by notions of directed graph colorings we study the connectivity of Hom(G,Tn)\text{Hom}(G,T_n) for TnT_n a tournament. Finally, we use paths in the internal hom objects of digraphs to define various notions of homotopy, and discuss connections to the topology of Hom complexes.Comment: 34 pages, 10 figures; V2: some changes in notation, clarified statements and proofs, other corrections and minor revisions incorporating comments from referee

    Inductive Constructions In Logic And Graph Theory

    Get PDF
    Just as much as mathematics is about results, mathematics is about methods. This thesis focuses on one method: induction. Induction, in short, allows building complex mathemati- cal objects from simple ones. These mathematical objects include the foundational, like logical statements, and the abstract, like cell complexes. Non-mathematicians struggle to find a common thread throughout all of mathematics, but I present induction as such a common thread here. In particular, this thesis discusses everything from the very foundations of mathematics all the way to combina- torial manifolds. I intend to be casual and opinionated while still providing all necessary formal rigor. This way, the content can be as readable as possible while still being complete
    corecore