
Belmont University Belmont University

Belmont Digital Repository Belmont Digital Repository

Honors Theses Belmont Honors Program

4-20-2020

Inductive Constructions In Logic And Graph Theory Inductive Constructions In Logic And Graph Theory

Davis Deaton
Belmont University, davis.deaton@pop.belmont.edu

Follow this and additional works at: https://repository.belmont.edu/honors_theses

 Part of the Logic and Foundations Commons

Recommended Citation Recommended Citation
Deaton, Davis, "Inductive Constructions In Logic And Graph Theory" (2020). Honors Theses. 21.
https://repository.belmont.edu/honors_theses/21

This Honors Thesis is brought to you for free and open access by the Belmont Honors Program at Belmont Digital
Repository. It has been accepted for inclusion in Honors Theses by an authorized administrator of Belmont Digital
Repository. For more information, please contact repository@belmont.edu.

https://repository.belmont.edu/
https://repository.belmont.edu/honors_theses
https://repository.belmont.edu/honors
https://repository.belmont.edu/honors_theses?utm_source=repository.belmont.edu%2Fhonors_theses%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/182?utm_source=repository.belmont.edu%2Fhonors_theses%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.belmont.edu/honors_theses/21?utm_source=repository.belmont.edu%2Fhonors_theses%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@belmont.edu

INDUCTIVE CONSTRUCTIONS
IN LOGIC AND GRAPH THEORY

Davis Deaton

A Senior Honors Thesis project submitted to the Honors Program
in partial fulfillment of the requirements for the degree

Bachelor of Mathematics

Belmont University Honors Program

2020

____________________________ Date __________

Thesis Director

___________________________ Date __________

Committee Member

___________________________ Date __________

Committee Member

Accepted for the Honors Council and Honors Program:

_________________________ Date ___________

Dr. Bonnie Smith Whitehouse, Director
The Honors Program

INDUCTIVE CONSTRUCTIONS IN LOGIC AND
GRAPH THEORY FOR THE NON-MATHEMATICIAN

DAVIS DEATON

Abstract. Just as much as mathematics is about results, math-
ematics is about methods. This thesis focuses on one method:
induction. Induction, in short, allows building complex mathemati-
cal objects from simple ones. These mathematical objects include
the foundational, like logical statements, and the abstract, like cell
complexes. Non-mathematicians struggle to find a common thread
throughout all of mathematics, but I present induction as such a
common thread here. In particular, this thesis discusses everything
from the very foundations of mathematics all the way to combina-
torial manifolds. I intend to be casual and opinionated while still
providing all necessary formal rigor. This way, the content can be
as readable as possible while still being complete.

1

2 DAVIS DEATON

Contents

1. Introduction 3
1.1. What Is This Document? 3
1.2. What is Mathematics? 4
1.3. What is Induction? 5
1.4. Summary of the Material Presented 7
2. Reading Mathematics 7
2.1. Formal Languages 7
2.2. Variables and Substitution 10
2.3. Sequences and the Natural Numbers 11
2.4. Syntax vs. Semantics 12
2.5. Grouping Symbols and Order of Operations 16
2.6. Free Constructions 17
2.7. Recommended Reading 20
3. Predicate Logic 20
3.1. Propositions 22
3.2. Truth Values 27
3.3. Shorthand 33
3.4. Formal Proofs 36
3.5. Recommended Reading 53
4. Set Theory 53
4.1. Equality 54
4.2. Single-Valued Functions 60
4.3. Pairs and Unions 63
4.4. Subsets and Set Builder Notation 67
4.5. Infinity and Induction 71
4.6. Pairs and Small Propositions 76
4.7. Multi-valued Functions 80
4.8. Internal Functions and Finiteness 81
4.9. Choice and the Law of the Excluded Middle 88
4.10. Summary 90
4.11. Recommended Reading 90
5. Graph Theory and Complexes 91
5.1. Relations 92
5.2. Graphs and Complexes 94
5.3. Homomorphisms 99
5.4. Inductive Definitions 103
5.5. Combinatorial Manifolds 108
5.6. Recommended Readings 122
6. Summary 123
References 123

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 3

1. Introduction

1.1. What Is This Document? Most mathematics papers aim to
produce a new result. Others may aim to introduce an existing result
into a new context, but this is rarer. Otherwise, they are generally
expository papers, explaining a field of mathematics and what it is for.
This thesis is different. My aim is to introduce a structure, compact
contractible combinatorial manifolds, without much regard for results
about them. Instead, I focus on precisely how these objects can be
constructed. I believe this results in a more authentic understanding
of what mathematics is. Along the way, I build up all of the rele-
vant mathematics required to rigorously understand each piece of the
mathematical puzzle.

Mathematics texts are notoriously difficult to parse on their first
read, and this document is no exception. This document differs from
standard mathematical texts in a few important ways. When presenting
mathematical material, I tend to prefer understandability over conven-
tion. Along the way, I make many choices which may seem strange
to other mathematicians. Additionally, examples and exercises will
be placed along with definitions rather than at the end of sections. I
believe this aids readability. Unfortunately, this document is only a brief
introduction and so falls short in terms of scope. To fully understand
the content, one may need to seek out other texts for additional reading
or exercises. I do my best to provide references to such material at the
end of sections. Since the majority of this material is mathematical
common-place and all of these particular proofs are my own, I do not
provide in-text citations. Those seeking a deeper understanding should
reference the books cited at the end of subsections.

The target audience of this thesis is and has always been non-
mathematicians. The topic, however, has changed. Originally, this
thesis intended to prove a new result about tropical mathematics, a
form of combinatorial algebraic geometry. I have since realized that
this topic is too complicated to serve its purpose. Much of my interest
in mathematics comes from connecting algebra and geometry. Tropical
geometry achieves this in a particularly beautiful way, but it relies on
complicated and continuous underpinnings. Combinatorial manifolds
can be presented with only discrete forms of mathematics, dramatically
simplifying background material. Further, it allows me to focus on one
of my favorite mathematical ideas: inductive constructions.

This text will be a challenge for the non-mathematician. It is not
that this content is dumbed-down for the non-mathematician, or that

4 DAVIS DEATON

it is presented in casual language. Instead, it is intended for the non-
mathematician because it is complete. Or at least more complete than
any other text I have seen. It will not help you complete problems. It
will not help you solve puzzles. It might not even help you become a
better mathematician. It will, however, spell everything out in laborious
detail. You may do with it what you wish.

Another thing to note is that this document has a click-able table of
contents and click-able references if you have acquired a PDF copy of
this thesis.

1.2. What is Mathematics? Mathematics is about three things:
facts, proofs, and structures.

Most people know what facts are; facts are things which are true. It
is also easy to guess that a proof means a sort of formal justification.
A structure is some sort of mathematical object which facts can be
proved about, for example numbers or shapes. In this paper, we will be
learning primarily about proof and structure while being less concerned
with learning facts.

Some mathematicians care primarily about facts. Some of these
mathematicians are applied mathematicians. Applied mathematicians
use mathematical facts to understand our world through physics, predict
the spread of diseases, design public infrastructure, or something else
along these lines. It is straightforward to understand the motivation
of these mathematicians and the work that they do, for these mathe-
maticians have a direct impact on the material world. There are some
non-applied mathematicians who still care primarily about facts. These
mathematicians might inherently care about numbers or shapes and
want to know facts about them whether or not there are material im-
plications for these facts. Perhaps surprisingly, not all mathematicians
agree on the facts. In particular, not all mathematicians agree on what
it means for something to be true.

The primary distinction between what is and isn’t a fact is the
distinction between classical and constructive mathematics. In both
camps, new facts are derived from axioms and proofs. Axioms are
statements which are claimed to be true without proof. These are our
base truths or our assumptions. A constructive mathematician tends
to believe that a true statement is exactly one which can be proved
from the axioms and that a false statement is exactly one which can
be proved to contradict the axioms. A classical mathematician tends
to believe that a statement is true if it can be proved from the axioms
but that other statements might also be true. This difference actually
boils down to one axiom: the law of the excluded middle (or one of its

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 5

equivalent statements). The law of the excluded middle claims that
every statement is either true or false, not both, and not somewhere
in-between. Classical mathematicians accept the law of the excluded
middle and use it in their proofs. A constructive mathematician does
not accept the law of the excluded middle (but also does not reject it).
All mathematicians agree that not every statement can either be proved
or disproved, and since these are what a constructive mathematician
means by true, a constructivist would not accept that every statement
is either true or false.

This distinction bleeds into what mathematicians consider a proof.
Some mathematicians care primarily about proofs. These mathemati-
cians are logicians or those close by. They want to know precisely how
we know what we know about mathematics. Classical mathematicians
consider a proof to be a particular sort of formal justification. Con-
structive mathematicians consider a proof to be a construction of a
particular term, a sort of certificate which verifies the truth of the
claim. Consequently, constructive mathematicians are pickier about
what counts as a proof. Although I tend to believe that constructive
mathematics is the better of the two perspectives, it is less natural
and more confusing. Thus, in this document, we will be presenting a
classical perspective. However, since induction is arguably the primary
mechanism of constructive mathematics, many of our methods will
parallel theirs.

Further, some mathematicians care primarily about structure. These
mathematicians perhaps pick a particular object to study, such as groups,
manifolds, or differential equations. Or perhaps these mathematicians
study connections between different objects, like representations or
categories. Here, we will show that many of these structures share
a fundamental commonality. Somehow, all of these different types of
mathematicians are able to find enough commonality to collaborate and
build upon each other’s work. Together, mathematicians have created
a rich and beautiful world, full of open questions. I hope to show you
the smallest slice of this wonderland.

1.3. What is Induction? Mathematical induction refers to two re-
lated concepts: inductive constructions and induction principles. In-
tuitively, inductive constructions define a mathematical object by pre-
scribing atoms, the smallest version of the construction, and recipes to
create new constructions from other objects, which can be thought of
as ingredients. For example, the food can make in my apartment is an
inductive construction. The atoms refer to the ingredients I have on
hand, and the recipes describe how to combine ingredients, which could

6 DAVIS DEATON

be atoms or other recipes, into new food. The fact that the construction
is inductive means that the atoms and the recipes with ingredients I
can make constitute the entirety of the foods I can make. That is, I
can’t make anything else. For example, milk and cereal are atoms, and
I can use a (simple) recipe to create cereal with milk from them. The
ingredients of cereal with milk would be, unsurprisingly, cereal and milk.
Or, if I can make a pie crust and a pie filling, I can use a recipe to
turn them into a pie, and if I can’t make a pie crust or I can’t make a
pie filling, then I can’t make a pie. If I made a pie, ingredients would
be the pie crust and the pie filling, which would each have their own
ingredients.

Suppose I have made a pie, and I want to know if it is gluten free.
If the pie crust and the pie filling (the only ingredients of the pie) are
gluten free, then the pie is gluten free. Similarly, if all of the ingredients
of the pie crust are gluten free, then the pie crust is gluten free. In
general, if all the ingredients of a recipe are gluten free, the resulting
recipe is gluten free. The induction principle of the food I can make
in my apartment says that if all of the atoms (all of the ingredients I
have in my apartment) are gluten free, then all food I can make in my
apartment is gluten free.

In general, each inductive construction has an induction principle.
The induction principle states that for any property, if every atom has
that property, and if the ingredients having the property guarantees
that the recipe does too, then every object has the property. In our
case, if every atom is gluten free, and gluten free ingredients guarantee
gluten free recipes, then all of the food is gluten free.

Induction principles can make mathematical structures much easier
to work with. Rather than trying to understand every food I could
possibly make, we only need to understand the atoms and the nature of
recipes to demonstrate a property of all the foods I can make. Further,
inductive constructions can be easily defined in terms of a sort of
recipe book. This is arguably easier to understand than other sorts
of definitions. Additionally, an induction principles comes “for free”
with every inductive construction, so even in the presence of a direct
definition, mathematicians may still prefer the inductive definition.

As inductive constructions are the focus of this thesis, nearly every
definition I present is an inductive construction. Thus, you will get
plenty of experience with them as you read this thesis.

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 7

1.4. Summary of the Material Presented. First, we discuss what
it is like to read mathematics. This section focuses on the important
components of all mathematical writing. Next, we introduce formal logic.
This section will prepare you to discuss mathematics in rigorous detail.
Then, we introduce set theory. Sets are the fundamental structure upon
which all other classical structures are built. After set theory, we end
with a discussion of different mathematical structures. In particular,
we will focus on graphs, simplicial complexes, and finally compact
contractible combinatorial manifolds.

2. Reading Mathematics

2.1. Formal Languages. Mathematics is organized so that it is “easy”
to be written and read. For the most part, formal mathematics does not
rely on using or interpreting pictures; people can easily make mistakes
with pictures. Instead, formal mathematics uses a formal language.

Definition 2.1.1. A formal language is two things: a collection of valid
symbols called the alphabet and a collection of valid strings of those
symbols in the alphabet called the words.

Here, symbols refers to Latin letters (a, b, x, A, etc.), Greek letters
(α, β, ϕ, Φ, etc.), punctuation (‘.’, ‘,’, etc.), grouping symbols (‘(’, ‘}’,
etc.), and mathematical symbols like (+, ∀,⇒, etc.), and a string refers
to a finite sequence of symbols written one after the other. Since I do
not expect every reader to be familiar with mathematical notation or
the Greek alphabet, I explain each new letter or symbol as they appear.

An important omission from this list is white-space characters like
spaces, tabs, or newlines. Generally, these characters have no math-
ematical meaning and are used only for clarity. Mathematicians are
free to place them wherever they wish without changing the meaning
of any formal word. Although in English, the strings ‘a periodic’ and
‘aperiodic’ are distinct, they would not count as distinct formal words.
Additionally, ‘a periodic’ counts as a single formal word, even if it is
literally two English words.

In the preceding two paragraphs, I placed single quotes around the
punctuation and grouping symbols as well as formal words. Generally,
italics will be used to suggest that letters such as a are formal rather
than being part of the prose, but often, formal words are placed in single
quotes to emphasize that they are not part of the prose. For example,
due to single quotes, it is especially clear that a sentence containing
a formal word such as ‘a.’ does not actually end at the period in the

8 DAVIS DEATON

formal word. It is important to note that the single quotes are not part
of the formal word.1

Strictly speaking, a language is not required to provide a way to
create valid words, only a collection (or rule) for determining which
words are valid. However, many languages provide production rules
for creating words from other words. Let us now describe a simple
language.

Example 2.1.2. For this example, our alphabet will consist of the
letters a and b. We will also have two production rules:

(1) The empty string ‘’ is a word.
(2) If W is a word, then W ‘a’ is a word.

The first rule tells us how to create our first word: ‘’. The second rule
tells us how to create many more words from our first word. It says
that if we have a word, we can stick an a on the end, and that’s also
a word. In particular, because ‘’ is a word, so is a, for the string a is
an ‘a’ written next to a nothing. Since a is a word, so is aa, and aaa,
and aaaa, and so on. In fact, the words in our language are exactly the
finite (possibly empty) sequences of the letter a repeated.

Languages created with production rules are an example of an induc-
tive construction. That a language is inductive means that only those
words which can be created from the rules are valid words. For example,
even though b is in our alphabet, it does not appear in any of the words
of the language because neither of the two production rules include the
letter b.

Exercise 2.1.1. Modify the production rules in the previous example
to create a language where every word contains exactly one b and
arbitrarily many a’s.

Example 2.1.3. A more complicated example is the language of Dyck
words, named after the mathematician Walther von Dyck. Here, our
alphabet will have the two letters ‘(’ and ‘)’ and the words will be
those which represent valid configurations of parentheses. For example,
()()(()()) is a valid Dyck word but ()) is not, since the final parenthesis
has no matching opening parenthesis.

1Further, punctuation serving a purpose in the prose will not be moved inside
single quotes as if the formal word is quoted text.

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 9

Although this is a rule for determining which words are valid, we can
also describe Dyck words with production rules:

(1) ‘’ is a Dyck word.
(2) If W is a Dyck word, (W) is a Dyck word.
(3) If V and W are Dyck words, VW is a Dyck word.

As before, the first rule says that the empty string is a Dyck word. The
second rule says that an open parenthesis followed by a Dyck word
followed by a closed parenthesis is a Dyck word. The third rule says
that two Dyck words written next to each other are a Dyck word. It
should be relatively straightforward to convince yourself that these
production rules provide exactly the valid configurations of parentheses,
but if not, you can take this as the definition of a valid configuration of
parentheses.

Importantly, it is actually possible to define the same language with
fewer production rules:

(1) ‘’ is a Dyck word.
(2) If V and W are Dyck words, (V)W is a Dyck word.

It is not immediately obvious that these two sets of production rules
create the same language, but they do.

Proof. First, realize that rule 2 of the second description can be achieved
in the first description by applying the original rule 1 to the word V
and then the original rule 2 to the new word (V) and the word W .
This means that every word that can be constructed with the second
description can be created with the first description.

Second, consider a Dyck word W in the sense of the first description.
If W is the empty string, it is a Dyck word according to rule 1 of the
first description. Otherwise, W must start with a ‘(’. In that case, find
the matching ‘)’. What is inside those parentheses must be a Dyck
word, and what follows it must also be a Dyck word. Thus, it can be
constructed using the rule 2 of the second description. This means that
every word that can be constructed with the first description can be
created with the second description.

Altogether, this shows that the two sets of rules describe the same
language. That is, every word of one is a word of the other. �

The preceding proof is not, technically, a formal proof. However, it
does still justify the claim I made: that these description of Dyck words
are the same. Thus, it is a prose proof, which is a proof written to
be read by regular humans rather than computers or extremely picky
humans. These proofs are very common in this thesis, but most of the
prose proofs presented can be easily formalized. In mathematics, proofs

10 DAVIS DEATON

generally end with a cute little square. This denotes that the proof is
over and the desired claim has been proven.

2.2. Variables and Substitution. In the previous subsection, we
used variables such as V and W to denote arbitrary words. In effect, W
and V were names of words rather than being words themselves. That
is, when I wrote “If W is a word, then W ‘a’ is a word,” I did not mean
“If the formal word ‘W ’ is a word, then so is the formal word Wa.”
Hopefully, this was clear because W was not even in the alphabet of the
languages discussed. Instead, I meant for W to represent an arbitrary
word, such as aaaa. For example, if I say “Let W be a Dyck word,”
you should imagine some actual Dyck word, like ()() taking the place of
W . Then, I might say “(W)(W) is a Dyck word.” When interpreting
that sentence, you would literally transcribe your imagined word, ()()
in place of W . You would receive the sentence “(()())(()()) is a Dyck
word,” which is true.

Consequently, it can be important to pick a few letters outside your
formal language to represent variables, but sometimes there is overlap.
There are, however, common conventions to help tell the difference
between formal letters and variables. Generally, certain letters will
refer to certain types of mathematical objects. Previously, we used V
and W for words because ‘word’ starts with ‘w’ and ‘v’ is close to ‘w’.
Similarly, we will often use n and m to denote numbers and f and g to
denote functions. Famously, mathematicians also use variables x and
y to denote numbers. Try to detect such patterns when they are not
mentioned explicitly, for knowing them makes mathematics much easier
to read and understand.

Often, particular words in a formal language will be too long to
write repeatedly. In this case, we may write ‘W : (()())(()())’ to mean
that the variable W is shorthand for the word (()())(()()). This
‘:’ may be read as “is defined to be.” After this shorthand is es-
tablished, one should mentally substitute every occurrence of W for
what it is shorthand for. That is, one should think of WWWW as
(()())(()())(()())(()())(()())(()())(()())(()()). However, with this presen-
tation, it is obvious that WWWW is a Dyck word (we have a rule for
writing Dyck words next to each other), while it would not be obvious
that (()())(()())(()())(()())(()())(()())(()())(()()) is not missing a closed
parenthesis somewhere. Thus, sometimes using shorthand can help
emphasize the internal structure of complex words. To reiterate, once a
shorthand is established, every occurrence of that shorthand should be
mentally replaced with whatever it is shorthand for. Shorthand does
not have meaning in the original language.

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 11

This means that when we write mathematics, we are often working
in a meta-language. That is, when we write ‘W : (()())(()())’, we are
writing a word in a meta-language whose words contain variables like
W and punctuation like ‘:’ as well as the original words. We will speak
more about these meta-languages later.

2.3. Sequences and the Natural Numbers.

Informal Definition 2.3.1. The natural numbers, also known as the
counting numbers, are the numbers 0, 1, 2, 3, etc.

We will formally describe these numbers later on. It is expected that
the reader knows of the natural numbers and their arithmetic including
addition, subtraction, multiplication, and division. Specific calculations
will generally not be required.

Exercise 2.3.1. Create a formal language whose alphabet is the nu-
merals 0 − 9 and whose words are the natural numbers. Note, ‘01’
should not be a word in your language.

The natural numbers are important because they let us represent
some amount of things. This is important in dealing with large numbers
of variables or with sequences.

Suppose W and V are Dyck words. Then, we established that VW
is a Dyck word. If U is another Dyck word, then so is UVW . Suppose
I wanted to add another Dyck word to this pattern. Which letter do
I choose for my next variable? T? And what happens if I want to
combine more than 26 Dyck words? It is hopefully clear that 26 Dyck
words written next to each other is a Dyck word, so it would be nice to
have a way to write this fact without using each individual letter of the
Latin alphabet.

For a limited number of Dyck words, say 5, we can write the following:

Suppose that W1, W2, W3, W4, and W5 are Dyck words.
Then, W1W2W3W4W5 is a Dyck word.

Here, the small numeral placed after and below the letter is called a
subscript or an index. Using indexed variables allows us to avoid using
too many letters and to group similar variables with similar names.
Subscripts can either be natural numbers or letters.

Further we can have a sequence of 26 Dyck words. In particular, we
may write:

Suppose that W1,W2, . . . ,W26 are Dyck words. Then,
W1W2 · · ·W26 is a Dyck word.

Here, we have a sequence of 26 variables, but we have omitted most of
them using ellipses. These ellipses should generally be read as “and so

12 DAVIS DEATON

on.” The first time we reference such a sequence, we generally write
the first two terms and the last term. After the first time, we may
choose to omit the second term, or sometimes even the last term if
clarity permits. It is also possible that we write sequences of actual
mathematical objects like this, for example 0, 2, 4, 6, 8, . . . , 20. In such
cases, we write enough terms for the pattern to be clear. To be fully
formal, the pattern must be specified somehow.

We can even use sequences with variable size. That is, we may write:

Suppose that W1,W2, . . . ,Wn are Dyck words. Then,
W1 · · ·Wn is a Dyck word.

This even holds when n is 0, in which case W1, . . . ,Wn is the empty
sequence, so W1 · · ·Wn is the empty string, which is a Dyck word. If
some statement is only valid for nonempty sequences, that will generally
be specified. For clarity, we may explicitly mention that we intend to
include the empty sequence. In general, assume the empty sequence is
included.

The number n is called the length of the sequence. We are also free to
choose another letter, so that V1, . . . , Vm denotes a sequence of length
m. If we have another sequence, W1, . . . ,Wm, this sequence has the
same length, m. Thus, if two sequences are referenced with the same
final subscript, they will have the same length. If they do not have the
same final subscript, they may or may not be the same length.

Sometimes, we need to reference a particular term of a sequence. For
example, suppose that we have a sequence of numbers k1, k2, . . . , kn and
we want to require that the third one is even. In that case, we could say
k3 is a even. Of course, this would only make sense if the length of the
sequence, n, is at least 3. Similarly, if we need to reference any value in
the sequence, we can write ki. Here, it is implied that 1 ≤ i ≤ n. For
example, we could require that some ki be even or that every ki is even.
An example statement is

If k1, . . . , kn are natural numbers and at least one of the
ki are even, then the product k1 · k2 · · · kn is even.

2.4. Syntax vs. Semantics. So far, we have been describing mathe-
matical syntax. Syntax describes which things we are allowed to write,
but says nothing about what they mean. For example, in the original
language we described, the strings of repeated a’s had no intrinsic
meaning (except perhaps as a representation of the noises you will make
reading this thesis). The semantics of a language describes how we
are supposed to interpret the words of the syntax. In general, a formal
language has no meaning whatsoever.

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 13

Let us look at a more complicated example of a language.

Example 2.4.1. We will describe a new kind of language: the language
of arithmetic expressions. Arithmetic expressions will have multiple
different types of words. First, a (formal) number is defined by:

(1) A digit 1-9 is a number.
(2) If N is a number and d is a digit 0-9, Nd is a number.

Then, an arithmetic expression is defined by:

(1) A number is an arithmetic expression.
(2) If E1 and E2 are arithmetic expressions, then E1 + E2 is an

arithmetic expression.
(3) If E1 and E2 are arithmetic expressions, then E1 · E2 is an

arithmetic expression.

Notice that we did not specify the alphabet of this language. In such
cases, the alphabet presumed to contain all the symbols appearing in
the production rules. In this case, the alphabet is the numerals 0-9 and
the operations + and ·.

These words encode arithmetic expressions consisting of numbers,
addition, and multiplication. The numbers in this language are called
formal because they are only strings of numerals not starting with a
0. That is, they are not (yet) interpreted as actual natural numbers.
Expressions include things like 2+3 ·6+30. For example, the digit ‘1’ is
a number, so the word ‘10’ is a number, so the word ‘10’ is an expression,
so ‘10 + 10’ is an expression. Each of these “so”s represents a use of
one of the production rules. Similarly, the digit ‘2’ is a number, so the
word ‘20’ is a number, so the word ‘20’ is an expression. However, as
expressions, ‘10 + 10’ is not equal to ‘20’. The language we have defined
has no semantics. That is, the expression ‘10 + 10’ does not have any
meaning, at least that we have described so far. In fact, the expression
‘20’ is not even the natural number 20. There is no preexisting meaning
to the strings of a formal language.

We could give these strings meaning by defining an interpretation,
which is to say some way of understanding what the strings repre-
sent. Unfortunately, with this definition of an expression, we probably
shouldn’t define semantics even if it seems like we easily could. Here
is why: suppose that we define E1: 10 + 2 and E2: 2 · E1. Then, by
substituting 10 + 2 for E1 in the definition of E2, we find that E2 is
2 · 10 + 2. We would interpret this value as the number 22 because we
perform multiplication before addition. However, if we first interpret
E1 as 12, then we would find that E2 is 10 · 12 which is 120. That is, it
matters in which order we interpret our expressions. In other words,
our semantics do not play nice with our production rules.

14 DAVIS DEATON

Fortunately, there is a simple solution. Let us create a new language
of arithmetic expressions whose production rules are:

(1) A number is an arithmetic expression.
(2) If E1 and E2 are arithmetic expressions, then (E1 + E2) is an

arithmetic expression.
(3) If E1 and E2 are arithmetic expressions, then (E1 · E2) is an

arithmetic expression.

where numbers refer to the same words as before. For clarity, we will
refer to the previous language of arithmetic expressions as the language
of simplified arithmetic expressions. These production rules are exactly
the same words as before, except now there are parentheses around the
second two production rules. Now, our problematic word 2 · 10 + 2 is no
longer an acceptable expression. Instead, we have the word (2 · (10 + 2))
and the word ((2 · 10) + 2). This language has semantics that do not
depend on order. That is, the semantics play nice with the production
rules. In particular, we can interpret each arithmetic expression as
representing a number.

Let us be annoyingly explicit about this process. To each arithmetic
expression E, we define a number EI, which is read “E I” or as “E’s
interpretation.” Try to get used to reading the notation out loud to
yourself. That is, each time you see EI, try thinking “E’s interpretation”
until you get used to the notation. Do this for each of the pieces of
notation that we define.

If E is an expression, then EI is the number that it represents. Since
arithmetic expressions can only be created by 3 rules, we can define
three rules to fully specify the interpretation.

(1) If E is a number n, then EI is the number n.
(2) If E is the expression (E1 +E2) for expressions E1 and E2, then

EI is the number E1I + E2I.
(3) If E is the expression (E1 · E2) for expressions E1 and E2, then

EI is the number E1I · E2I.

Let us work an example. Let’s interpret the expression2

E: (2 · ((1 + 1) + (3 · 2))).

That is, we seek to find the number

(2 · ((1 + 1) + (3 · 2))I.

Here, E is of the form (E1 · E2) where E1: 2 and E2: ((1 + 1) + (3 · 2)).
Thus, EI is the number E1I · E2I. Since E1 is the number 2, we know
that E1I is the number 2. Determining E2I takes more work. E2 is

2Remember to read this as “E is defined to be. . . ” or “E is shorthand for. . . .”

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 15

of the form (E3 + E4) where E3: (1 + 1) and E4: (3 · 2). Thus, E2I is
the number E3I + E4I. As an exercise, convince yourself the E3I is 2
and E4I is 6. Substituting these values, we find that E2I is the number
2 + 6 which is 8. Finally, since EI is E1I · E2I, we can now substitute
the values of 2 and 8 for E1I and E2I respectively to find that EI is
2 · 8 which is 16.

It is important that we are not able to say that E “is equal to” 16.
As expressions, E is not equal to 16, because E is the expression

E: (2 · ((1 + 1) + (3 · 2))),

which is not the expression 16. Expressions are only equal when they
are literally the same string of characters. Instead, we can say that EI
is equal to 16, but I even recommend against that; just say that EI is
16.

This interpretation of expressions as numbers required already under-
standing what we mean by + and ·. Although we could have rigorously
defined + and ·, it is not always possible to provide a rigorous definition
of interpretations. In fact, since interpretations live outside the language
being interpreted, some interpretation will always be intuitive rather
than formal.

We mentioned earlier that when we make statements such as “If W
represents the Dyck word W : ()(), then W (W)W is a Dyck word,” we
are actually using a meta-language, a language whose words consist
of the words of our original language as well as variables such as W .
This is a perfect example of the use of semantics. When we say W : ()(),
we mean that W should be interpreted as ()(). In other words, we are
saying that WI is the Dyck word ()(). Thus, although I have written
()W () and WW differently, they are both interpreted as the Dyck word
()()()(). Thus, we can say that their interpretations are the same. This
is why I caution against making claims like “()W () is equal to WW .”
While this is true in the language of Dyck words, it is not true in the
meta-language of Dyck words and variables. In general, however, if a
statement of equality is made, it should be interpreted in the smallest
language possible.

16 DAVIS DEATON

2.5. Grouping Symbols and Order of Operations. Although it
may seem like mathematicians really like to write things, mathemati-
cians are also obsessed with shorthand that will allow them to not write
things. For example, we wrote

E: (2 · ((1 + 1) + (3 · 2))).

The parentheses here, while necessary for having a consistent interpre-
tation, are distracting and reduce readability. This is generally true of
other grouping symbols such as [] and {}.

It would be nice, for example, to simply say

E: 2 · (1 + 1 + 3 · 2).

This is possible, if we define two types of rules: associativity rules and
an order of operations. Together, these rules explain how to place
parentheses in shortened expressions like our new definition of E. In
our language of expressions, words such as 3 · 2 and 1 + 1 are not
valid, only (3 · 2) and (1 + 1), but the un-parenthesized words appear
in our latest definition of E. The order of operations states which
parentheses we should replace first, those around + or those around ·.
The order of operations of arithmetic is that · comes before +. That
is, in an expression like 1 + 2 · 3, we first place parentheses around
the · sub-expression to get 1 + (2 · 3) and then we place parentheses
around the + sub-expression to get (1 + (2 · 3)), which is a legitimate
expression. The associativity rules help with expressions like 1 + 2 + 3.
Should this represent the expression ((1 + 2) + 3) or (1 + (2 + 3))?
Although we can agree that these are interpreted the same, these are
not equal as expressions, so it does matter which one we pick in most
languages. The associtivity rules of arithmetic expressions say that +
and · are left associative, which means that we place paretheses around
the left-most + and · first. That is, for the expression 1 + 2 + 3, we
first place the parentheses around the left-most + sub-expression to get
(1 + 2) + 3, then the next + to the right to get ((1 + 2) + 3), which
is a legitimate expression. Sometimes, parentheses are already placed
around sub-expressions. In such cases, simply leave them there.

Exercise 2.5.1. Place parentheses in the following expressions accord-
ing to the order of operations and associativity of arithmetic expressions.

(1) 1 · 2 · 3
(2) 1 + 2 + 3 + 4
(3) 1 + 2 · 3
(4) 1 · 2 + 3
(5) 1 + 2 · 3 · 4 + 5
(6) (1 + 2) · 3 · (4 + 5)

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 17

Unfortunately, grouping symbols often get in the way of substitutions.
That is, suppose E1: 1+2+3 and E2: 2 ·E1. Before, when we substituted
variables for words, we were able to transcribe them directly. That is,
we might that that E2 is 2 · 1 + 2 + 3. This, however, is false. When
substituting a variable for a shortened expression, you must put the
parentheses back before you substitute. That is, even though we said
that E1: 1 + 2 + 3, E1 is actually the expression ((1 + 2) + 3) according
to our associativity rules. Thus, E2 is actually 2 · ((1 + 2) + 3) or
(2 · ((1 + 2) + 3)). This is as desired. Technically speaking, you only
need to add back in the outer-most parentheses, but it is easier to claim
that we must replace all the shorthand.

2.6. Free Constructions. For both Dyck words and arithmetic ex-
pressions, we defined two separate sets of production rules. In the
case of Dyck words, both sets of production rules resulted in the same
language. In the case of arithmetic expressions, the two sets of rules
generated two different languages. In both cases, however, the first rules
were non-free and the second rules were free. Look back at the two
definitions of arithmetic expressions. There is a common form between
them. Both are three rules: one taking a number and yielding an
expression, and two taking two expressions and yielding an expression.
These can be given by a signature.

Example 2.6.1. The signature of arithmetic expressions is

(N → E,E2 → E,E2 → E).

This notation means that one rule takes a number (N) and yields (→,
read as “to” in this context) an expression (E), the next rules takes two
expressions (E2, read as “E two” or “E squared”) and yields (→) an
expression (E), and the last rule takes two expressions (E2) and yields
(→) an expression (E). Both production rules have this same signature.
This means that they are related as languages. We can give each rule
in the signature a name. This is called a tagged signature. For example,

(i:N → E, A:E2 → E, M :E2 → E).

Here, the tags are i, A, and M . The colons are sometimes read as
“from” in this context, so this reads “i from N to E, A from E two to
E, M from E two to E.” The free language on this tagged signature is
given by the following production rules:

(1) If n is a number, ni is an free word.
(2) If w and v are free words, wvA is a free word.
(3) If w and v are free words, wvM is a free word.

18 DAVIS DEATON

For example 0i1iA2iM is a free word. The signature of these production
rules is exactly the signature we used to create it. The most important
property of the free language is that there is exactly one way of creating
a word from the production rules. The second most important property
of the free language is that it can be interpreted into every language
with the same signature. Although free words are generally obtuse,
these properties will reveal great insight into their nature.

Here, there are three rules for creating a free word: i for the inclusion
of numbers into free words, A for the addition of two free words, and
M for the multiplication of two free words. We can interpret free words
into arithmetic expressions as follows:

(1) If w is of the form ni for a number n, wI is the number n treated
as an arithmetic expression.

(2) If w is of the form w1w2A for words w1 and w2, then wI is the
expression (w1I + w2I). Hence, one can read the word w1w2A
as “w1 and w2 added.”

(3) If w is of the form w1w2M for words w1 and w2, then wI is the
expression (w1I · w2I). Hence, one can read the word w1w2M
as “w1 and w2 added.”

As an example, the free word 0i1iA2iM , read as “0 included and 1
included added, and 2 included multiplied,” is interpreted as ((0+1) ·2).
Notice that the numbers and operations appear in the same order as in
the free word.

In free words, the operations A and M are placed at the end of the
two words they effect. This is called post-fix notation. The notation
w1 +w2, where the operation is placed in between the words it effects, is
called in-fix notation. The advantage of post-fix notation is that allows
consistent interpretations without parentheses. The disadvantage of
post-fix notation is that it is hard to read.

Importantly, the process of interpreting free words as arithmetic
expressions is reversible. For every arithmetic expression E, there
is exactly one free word w such that wI is E. This is equivalent
to the statement that there is one and only one way to make an
expression E from the production rules. This is not the case for
simplified arithmetic expressions. For example 0i1iA2iA would be
interpreted as 0 + 1 + 2, but so would 0i1i2iAA. Consequently, the
simplified arithmetic expressions are called non-free while the proper
arithmetic expressions with parentheses are free.

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 19

Example 2.6.2. Let us also consider the two sets of production rules
for Dyck words. The first one has tagged signature

(E:D0 → D,W :D1 → D, J :D2 → D).

This says that the first rule, E, takes no Dyck words (D0) and yields
a Dyck word. This is the rule that the empty string is a valid Dyck
words. Then, the second rule, W , takes a Dyck word (D1, which we
can also write as simply D) and yields another Dyck word. This is the
rule that wraps a Dyck word in parentheses. Finally, the third rule, J ,
takes two Dyck words (D2) and yields another Dyck word. This is the
rule that joins two Dyck words by writing one after the other.

The production rules for this language are straight forward:

(1) E is a free word.
(2) If w is a free word, wW is a free word.
(3) If w1 and w2 are free words, w1w2J are free words.

Like before, these free words have an interpretation into actual Dyck
words. For example, EWEWJ interpreted as the Dyck word “the
empty string wrapped and the empty string wrapped joined” or ()().

Exercise 2.6.1. Write down the three rules for interpreting these free
words as Dyck words.

The three rules for generating Dyck words are not free. This is
because EWEWJEWJ and EWEWEWJJ are both interpreted as
()()().

On the other hand, the second set of production rules for Dyck words
had the signature (E:D0 → D,S:D2 → D). These production rules do
turn Dyck words into a free language.

Exercise 2.6.2. Write the production rules for the free language on
(E:D0 → D,S:D2 → D) following the pattern before. Then, write the
two rules for interpreting these free words as Dyck words. Convince
yourself that this process is reversible.

Example 2.6.3. The most important free language is the one on the
signature (0:N0 → N,S:N → N). It’s production rules are:

(1) 0 is a free word.
(2) If w is a free word, wS is a free word.

The valid words are 0, 0S, 0SS, 0SSS, and so on. These words can be
interpreted as natural numbers with the following rule.

(1) If w is of the form 0, then wI is the number 0.
(2) If w is of the form vS for a word v, then wI is the number

vI + 1.

20 DAVIS DEATON

For example, 0I is the number 0 and 0SSSSI is the number 0+1+1+1+1
which is 4, because there are four S’s. This is why we named the rule
S : N → N ; it stands for successor.

Exercise 2.6.3. Convince yourself that this interpretation of free words
into numbers is reversible.

2.7. Recommended Reading. A gentler and deeper understanding
of mathematical writing is presented in Devlin[2]. Devlin’s goal is
similar to mine, but he focuses less on rigor and more on concepts.
Consequently, his book is a good companion to this thesis. He will go
into topics that I do not cover, like the real numbers, but misses out on
the graph theoretic topics that we will cover.

For a more complete description of languages (and their applications),
I recommend Webber[11]. However, if you are new to mathematics,
I recommend moving forward in this thesis before exploring formal
languages further. Instead, if you progress in this thesis, and also in
some of the other recommended readings, and you are still interested
in learning more about languages, find this book.

3. Predicate Logic

Now that we have talked about languages at length, we are ready
to introduce the language of mathematics: logic. Generally, mathe-
maticians learn a significant quantity of advanced mathematics before
taking a course in formal logic. Similarly, mathematicians learn a signif-
icant quantity of advanced mathematics before they learn about formal
languages. You, if you are a non-mathematician, have the unlucky
opportunity of learning languages and logic first. I have chosen this
nonstandard ordering because I am choosing to focus on induction as a
mathematical principle rather than a particular subject of mathematics.

Like most mathematical theories, predicate logic has two pieces:
syntax and semantics. Different logics have different syntax or different
semantics. Here, we will present the predicate logic of set theory.
The words of predicate logic are called propositions, also called logical
formulae. Semantically, propositions are supposed to represent sentences
depending on some number of formal variables which are either true
or false when values are plugged into the variables. Alternatively,
propositions are supposed to represent the mathematical statements
that can be proved or disproved.

Let us look at some informal examples of propositions. “b is reading
this thesis” is a sentence which is either true or false depending on
the value of b, and thus, it is a proposition. Here, b is the variable.
When b is interpreted as “you”, the sentence becomes true because you

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 21

are reading this thesis. However, when b is interpreted as “me”, the
sentence becomes false because I am not reading this thesis (at least
right now, probably).

A proposition can depend on multiple variables. For example, “a is
the father of b” is a proposition depending on the variables a and b,
and “c + d = 1” is a proposition depending on the variables c and d.
Unsurprisingly, there are propositions depending on 3 variables such as
“p1 and p2 went to school together at s,” which depends on the variables
p1, p2, and s.

There are also propositions which depend on no variables, which are
called logical sentences or just sentences. For example, “you are reading
this thesis” or “Davis Deaton is not the author of this thesis” are both
sentences; the former being true and the latter being false. Because a
proposition is a single formal word in the language of predicate logic,
a sentence, a proposition depending on no variables, is also a single
formal word.

Every proposition becomes a sentence when particular values are
substituted for its variables. For example, while a+b = 1 is a proposition
of 2 variables, but as soon as we agree on values for both a and b, like
perhaps a is 1 and b is 2, the predicate becomes the sentence 1 + 2 = 1.

Before we can make any sense of predicate logic, we need to agree
upon a domain of discourse. A domain of discourse consists of two
things: the mathematical objects which our variables are allowed to
represent and the fundamental relationships between these objects,
which are called predicates. The objects in the domain of discourse of
this thesis, and that of most of modern mathematics, is sets.

Informal Definition 3.0.1. A set is an unordered, possibly empty,
collection of objects in our domain of discourse, called elements counted
without repetition. Sets have one fundamental relationship, written ∈
and read as “is an element of.” If x is an element of y, we write x ∈ y.

If our domain of discourse were material objects, then we could form
collections such as “the collection of all people” or “the collection of all
blue things” or “the collection of everything you own” and declare them
to be sets. The elements of the collection of all people are individual
people. These people have no inherent ordering to them; they are
simply in the collection. Further, consider the collection of dog owners.
This collection only contains each dog owner one time, even if they own
multiple dogs; that is, sets do not keep track of repetition or how many
times an element is included in the set. There should also probably be
an empty collection with no elements. Using these examples, you should
make sure you have an intuitive notion of sets. That is, which things

22 DAVIS DEATON

are and are not sets? Because the objects in our domain of discourse
are sets, the elements of sets are precisely other sets. So our sets could
include an empty set, and a set containing that empty set, and a set
containing both that set empty set and also the set containing that
empty set.

As marked, this definition of a set is informal. Since our domain
of discourse lies outside predicate logic, sets cannot be fully defined.
Consequently, you can think of sets however you want. We will however,
require certain properties of your conception of sets. This will be the
topic of the next section.

3.1. Propositions. Similar to the meta-languages we discussed before,
the syntax of formal logic includes variables. Generally, variables within
the language of logic will be lowercase Latin letters early in the alphabet,
such as a, b, c, d, possibly with subscripts (a1, b6, and the like). However,
we will also use lowercase Latin letters, generally those towards the end
of the alphabet such as x, y, z to be meta-variables referring to the name
of an unknown variable. That is, the meta-variable x may refer to the
variable a or the variable c14. In all cases, the distinction will hopefully
be clear. If any statement is made of the form “if x is a variable” or
the like, it means that x (or whatever other symbol) is a meta-variable
referring to some unknown variable such as a or b. Lowercase Greek
letters such as ϕ, ψ, and χ will be used3 as meta-variables representing
the words of formal logic, which are propositions.

Let us delay no longer and define a proposition. This construction is
complicated, so do not expect to understand it in one read. Feel free
to skim it a few times, then read it again closely, or whatever works
for you. Additionally, it might help to skip the definition altogether,
read the following prose, then come back. Also, remember to keep track
of the ways that I say to read the notation. These are designed to be
helpful. I have put this definition on its own page so that you can read
is as efficiently as possible.

3ϕ is the Greek letter phi said like “f-eye” or “fee,” ψ is the Greek letter psi said
like “sigh”, and χ is the Greek letter chi said like “k-eye.”

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 23

Definition 3.1.1. A proposition is defined by the following production
rules. These production rules rely on the free and bound variables of a
proposition, which are also defined inductively.

(1) ⊥, read as “false,” is a proposition.
(2) (x ∈ y), read as “x is an element of y” or “x in y,” is a proposition

if x and y are variables.
(3) (ϕ ∧ ψ), read as “ϕ and ψ,” is a proposition if ϕ and ψ are

propositions and no free variable of ϕ is bound in ψ and vice
versa.

(4) (ϕ ∨ ψ), read as “ϕ or ψ,” is a proposition if ϕ and ψ are
propositions and no free variable of ϕ is bound in ψ and vice
versa.

(5) (ϕ⇒ ψ), read as “ϕ implies ψ” or “if ϕ then ψ,” is a proposition
if ϕ and ψ are propositions and no free variable of ϕ is bound
in ψ and vice versa.

(6) (∀x. ϕ), read as “for all x, ϕ,” is a proposition if ϕ is a proposition
and x is a variable not bound in ϕ.

(7) (∃x. ϕ), read as “there exists x such that ϕ,” is a proposition if
ϕ is a proposition and x is a variable not bound in ϕ.

The free variables of a proposition are defined as follows:

(1) No variable is free in ⊥.
(2) A variable is free in (x ∈ y) if it is either x or y.
(3) A variable is free in (ϕ ∧ ψ) if it is free in ϕ or ψ.
(4) A variable is free in (ϕ ∨ ψ) if it is free in ϕ or ψ.
(5) A variable is free in (ϕ⇒ ψ) if it is free in ϕ or ψ.
(6) A variable is free in (∀x. ϕ) if it is free in ϕ and is not x.
(7) A variable is free in (∃x. ϕ) if it is free in ϕ and is not x.

The bound variables of a proposition are defined as follows:

(1) No variable is bound in ⊥.
(2) No variable is bound in (x ∈ y).
(3) A variable is bound in (ϕ ∧ ψ) if it is bound in either ϕ or ψ.
(4) A variable is bound in (ϕ ∨ ψ) if it is bound in either ϕ or ψ.
(5) A variable is bound in (ϕ⇒ ψ) if it is bound in either ϕ or ψ.
(6) A variable is bound in (∀x. ϕ) if it is bound in ϕ or is x.
(7) A variable is bound in (∃x. ϕ) if it is bound in ϕ or is x.

A variable is used in a proposition ϕ if it is either free or bound in
ϕ and is unused otherwise. One should confirm that this definition
guarantees that no variable is both free and bound in a proposition.

24 DAVIS DEATON

If you are not a mathematician (or perhaps even if you are), this
definition might be the most complicated definition you have ever
seen. Hopefully, we can alleviate this pain by carefully analyzing the
definition. It is important to remember that we have only defined syntax
and not interpretation. That is, you do not have to understand what
any propositions do or mean; that will come with the semantics.

Definition 3.1.1 inductively defines a proposition and which variables
in it are free and bound. It does so by defining seven recipes for creating
a proposition and defining the free and bound variables of each recipe
in terms of its ingredients.

Recall that a proposition is supposed to represent a statement that
is either true or false about sets depending on some variables. The first
recipe says that a false proposition, denoted ⊥, is a proposition. No
variable is either used or bound in ⊥ since no variable appears in its
definition.

The second recipe says that our fundamental relationship between sets,
the predicate ∈, is a proposition when it is given variables. Specifically,
if x and y are variables, then (x ∈ y) is a proposition representing “x is
an element of y.” The variables x and y are free in (x ∈ y) because we
are “free” to substitute actual sets for these variables.

The next three recipes provide a way of joining two propositions
together with a connective. In order, ∧ represents “and,” ∨ represents
“or,” and ⇒ represents “implies.” Because this is not the section on
semantics, I will not elaborate upon what these connectives mean, but
you can probably guess from how they’re said. The free and bound
variables of these joined propositions are respectively those free or bound
in the propositions joined.

The last two recipes are called the quantifiers. The symbol ∀ is
the universal quantifier and the symbol ∃ is the existential quantifier.
Quantifiers take a proposition and “consume” variables to yield another
proposition. The proposition (∀x. ϕ) represents the sentence “for any
choice of a set x, ϕ holds.” The proposition (∃x. ϕ) represents the
sentence “there is some choice of a set x such that ϕ holds.” For
example, such a proposition could represent “there exists an x such that
x is an element of y”. The variable x is considered bound in (∃x. ϕ)
and is no longer free. This is because the sentence “there exists an x
such that x is an element of y” does not need a value of x to be filled in
for it to be true or false, just one for y. If we substitute a set for y, the
statement has a truth value indicating whether or not y has an element.
Hence, the quantifiers “consume” free variables of ϕ and make them
bound. We use the term bound because although the proposition does
not require a value for bound variables, we still should not reuse them as

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 25

free variables in propositions that we join up with connectives. Strictly
speaking, these justifications are semantic; however, we mandate the
same behavior in the syntax.

To reiterate, the free variables of a proposition are supposed to
represent the variables which need to be “plugged in” to the proposition
for it to become a sentence. The bound variables of a proposition are
supposed to represent the ones that are“used up” by quantification. Let
us get used to these rules with some examples and exercises.

Example 3.1.2. Here, we will find free and bound variables.

(1) ((a ∈ b) ∧ (b ∈ c))
Free: a,b,c. Bound: none.

(2) (∀a. ((a ∈ b)⇒ ⊥))
Free: b. Bound: a.

(3) (∀a. (∃b. (a ∈ b)))
Free: none. Bound: a,b.

(4) ((∀a. (a ∈ b))⇒ (∃a. (b ∈ a)))
Free: b. Bound: a.

Exercise 3.1.1. Find the free and bound variables of the following
propositions according to the rules in definition 3.1.1.

(1) ((a ∈ b) ∨ (b ∈ a))
(2) (∀a. (a ∈ a))
(3) ((∀d. ϕ) ∧ ψ) if a and b are free in ϕ, no variable is bound in ϕ,

a is free in ψ, and c is bound in ψ

Example 3.1.3. It is easy to come up with examples of strings which
appear to be valid propositions but actually are not. Here are some
examples.

(1) ((a ∈ b) ∈ c)) is not a valid proposition because ∈ can only
connect two variables, but here, it is between (a ∈ b) and c, the
former of which is not a variable.

(2) ((a ∈ b) ⇒ c)) is not a valid proposition because ⇒ can only
connect propositions, and c is a variable rather than a proposi-
tion.

(3) (∃a. (∀a. (a ∈ a)) is not a valid proposition because we cannot
quantify over the same variable twice. In particular, since a is
bound in (∀a. (a ∈ a)), we cannot add ∃a. to it.

(4) ((a ∈ a)⇒ (∀a. (a ∈ b))) is not a valid proposition because a is
free on the left side of ⇒ but is bound on the right side.

26 DAVIS DEATON

Exercise 3.1.2. Which of the following propositions are valid?

(1) (a ∈ b)⇒ ⊥
(2) (∀a. (a ∈ a))
(3) (a ∈ ⊥)
(4) ⊥ ∨ (a ∈ b)
(5) (∀a. (∃b. ((b ∈ a)⇒ ⊥)))
(6) ((∃a.(a ∈ b))⇒ (∀b. b ∈ a))
(7) (∀a. ((b ∈ a) ∨ ((b ∈ a)⇒ ⊥)))
(8) (∀a. (∀b. (∀c. (∃a. ((a ∈ b) ∧ (b ∈ c))))))
(9) (∀a. ((a ∈ a) ∈ a))

Here, I will reiterate a property of all languages. Two propositions are
said to be equal only if they are written identically. Thus, you cannot
move variables around, and you cannot apply variable replacements. For
example, ((ϕ⇒ ψ)⇒ χ) is not the same proposition as (ϕ⇒ (ψ ⇒ χ))
because the parentheses differ, and (ϕ∧ψ) is not the same proposition4

as (ψ ∧ ϕ) because the order differs. However, as before, if ϕ represents
the proposition (a ∈ a), then the propositions (ϕ∨⊥) and ((a ∈ a)∨⊥)
are properly the same; this variable ϕ is not a variable in the language
of predicate logic, but instead allows us to use shorthand.

The last thing to note is that each rule for creating a proposition,
except the one for ⊥, contains some grouping symbol. This means that
our language is free. That is, there is exactly one way of creating each
proposition from the production rules.

As before, that means our language is hard to read. Therefore, we can
choose to omit parentheses as long as we define an order of operations
and associativity rules. We place parentheses around the production
rules in the following order:

(1) ∈,
(2) ∧ and ∨ simultaneously,
(3) ∀ and ∃ simultaneously,
(4) ⇒,

Further, since the connectives join two propositions, we must define
associativity rules. We choose that ∧ and ∨ are left-associative and
that ⇒ is right-associative. Importantly, recall that when substituting
shorthand, you must place the parentheses back in the expression you
are substituting.

It is important to remember that the syntax of predicate logic, at this
point, has no meaning. This definition serves only to create propositions
from ∈ and other propositions. There is not much more that can be

4unless ϕ and ψ represent the same proposition

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 27

said about the syntax of predicate logic. The only thing left is to get
practice parsing propositions. It is useful as well to practice reading these
propositions in the language described in the definition of propositions.
In general, you can avoid saying parentheses or other grouping symbols
out loud.

Example 3.1.4.

(1) When fully parenthesized, the proposition

∀a. a ∈ b is (∀a. (a ∈ b)).
(2) The proposition

∀a.∃b. a ∈ b is (∀a. (∃b. (a ∈ b))).
(3) The proposition

∀a. a ∈ b ∧ b ∈ c is (∀a. ((a ∈ b) ∧ (b ∈ c))),
which is distinct from

((∀a. (a ∈ b)) ∧ (b ∈ c)).
(4) The proposition

a ∈ b ∧ b ∈ c ∧ c ∈ a is (((a ∈ b) ∧ (b ∈ c)) ∧ (c ∈ a)).

(5) The proposition

a ∈ b⇒ b ∈ c⇒ c ∈ a is ((a ∈ b)⇒ ((b ∈ c)⇒ (c ∈ a))).

Note the difference from the last example.
(6) The proposition

∀a. a ∈ b⇒ ⊥ is ((∀a.(a ∈ b))⇒ ⊥).

Exercise 3.1.3. Place parentheses in the following propositions.

(1) a ∧ b⇒ ⊥
(2) ⊥ ⇒ a ∈ b
(3) a ∈ b ∧ b ∈ c ∨ b ∈ c⇒ c ∈ d⇒ d ∈ a ∧ a ∈ b
(4) ∀a.∀b. a ∈ b⇒ c ∈ d
(5) a ∈ b⇒ ∀c. a ∈ c⇒ ∃c. c ∈ c

3.2. Truth Values. The syntax of predicate logic is pretty useless
unless we know what it is supposed to mean. A proposition is supposed
to represent a sentence that is true or false when values from the domain
of discourse (so, sets) are plugged in for its free variables.

Most mathematicians believe that all formal sentences are either true
or false. Even if there are sentences that we cannot prove, they are all
“actually” true or false depending on the specific kind of sets we are
using, whether or not we even know what kind of sets we are using.

28 DAVIS DEATON

This idea, that all formal sentences are either true or false, is called the
law of the excluded middle because it excludes the possibility of truth
values “between” true and false. The truth or falsehood of a sentence
is called its truth value. A truth value is not a formal idea; it is an
understanding that you must bring to the table. Even if you do not
accept the law of the excluded middle, it is provable within set theory.

In order for a proposition to have a well-defined truth value, we
must substitute values for its free variables. We do so using a variable
assignment. A variable assignment is a sequence of distinct variables and
their corresponding (possibly repeating) sets which they will be assigned.
A variable assignment is written in the form [x1: v1, . . . , xn: vn] read as
“x1 replaced with v1, x2 replaced with v2, etc.” where x1, . . . , xn is the
sequence of distinct variables and v1, . . . , vn is a sequence (of the same
length) of sets which they will be assigned. In particular, the set vi will
be assigned to the variable xi.

If x1, . . . , xn contains the free variables and none of the bound vari-
ables of a proposition ϕ, then the truth value of ϕ under the variable
assignment [x1: v1, . . . , xn: vn] is denoted by [x1: v1, . . . , xn: vn]ϕ read
as “x1 replaced with v1, x2 replaced with v2, etc. in ϕ.” It only makes
sense to perform these variable assignments when the variables contain
every free variable of the proposition and none of its bound variables.

As an example, if v1 and v2 are sets, then [x: v1, y: v2](x ∈ y) rep-
resents the truth value of the sentence “v1 is an element of v2”. We
are also allowed to add other variables to our assignment which are
neither free or bound in the proposition, so it would be fine to write
[x: v1, y: v2, z: v3](x ∈ y), which would represent the same thing.

Since there are seven ways of building propositions, we must specify
when each of each seven types of proposition are true or false. Strictly
speaking, each mathematician is required to bring an understanding
of what the seven kinds of propositions mean semantically. However,
we will elaborate upon the conventional understanding, even if the
discussion is technically informal.

Unsurprisingly, we will need one concept for each rule for making
propositions. First, we will need a notion of false. False is supposed to
represent some sort of contradiction. For the most part, you will need to
provide this notion. That is, you must know what false means. Second,
we need a notion of what it means for some set to be one of the elements
of another set. This is part of the understanding of sets that you bring
to the table. That is, when we say a set is an unordered collection,
you are required to know which things are and are not elements of any
collection that you imagine (or how one could theoretically know).

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 29

Next, we need interpretations of the three connectives: Let the
variables p and q represent arbitrary truth values. At least for a
moment, suppose that there are two truth values: T for true and F for
false. We describe the semantics of the connectives using the following
truth table.

p q p ∧ q p ∨ q p⇒ q
T T T T T
T F F T F
F T F T T
F F F F T

Truth tables summarize the truth value of compound expressions. Each
column represents the truth value of a different statement, and each
row represents a possible combination of truth values. There are four
rows since p and q can take on 2 truth values each. You are allowed
to reject the notion that all truth values are either true or false, thus
rejecting the premise of this truth table, but in such cases, you will
need to supply your own interpretation of ∧, ∨, and ⇒.

The third column represents the conjunction of p and q, which is
true whenever both p and q are true. This represents the connective
“and” and explains why ∧ is read as “and.” As evidenced by the table,
p ∧ q is true whenever both p and q are true.

The fourth column represents the disjunction of p and q, which is true
whenever p is true or q is true or both. This represents the connective
“or” and explains why ∨ is read as “or.” Sometimes this is also called
the inclusive or because it “includes” the possibility that both p and q
are true.

The fifth column is perhaps the least intuitive. It represents the
implication of p and q. p⇒ q is supposed to represent the phrases “p
implies q” or “if p, then q,” which is a sort of contract. For example,
“if you finished your dinner then you got dessert” is a sort of contract.
The statement is false if the contract was violated and is true otherwise.
That is, the statement is false if you finished your dinner but did not
get dessert. This is the second row in the column of the ⇒. If you
finished dinner and got dessert, the contract was not violated. This
is the first row in the ⇒ column. Further, if you did not finish your
dinner, the contract was not violated regardless of whether or not you
got dessert (the contract does not say that you did not get dessert
if you did not finish dinner). These are the last two rows of the ⇒
column. This definition of implication is generally considered weird
by non-mathematicians, but this is the most powerful way to interpret
implication. Thus, we have defined what the three connectives mean.

30 DAVIS DEATON

Exercise 3.2.1. Here we ask some simple questions regarding the
structure of truth tables.

(1) If p is false and q is true, what is p⇒ q?
(2) Consulting the following truth table, what is T Y F?

p q p Y q
T T F
T F T
F T T
F F F

(3) For arbitrary p, what is the value p ∧ F?
(4) For arbitrary p, what is the value p⇒ p?
(5) For arbitrary p, what is the value p Y p?

Lastly, we must define what the two quantifiers mean. The universal
quantifier ∀x. ϕ is supposed to be interpreted as the sentence “for all
values of x, ϕ holds.” Thus, ∀x. ϕ holds whenever the proposition ϕ
holds for all sets x. The existential quantifier ∃x. ϕ is supposed to be
interpreted as the sentence “there is some value x such that ϕ holds.”
Thus, ∃x. ϕ holds whenever the proposition ϕ holds for some set x. We
will elaborate more upon these quantifiers in the full definition of the
semantics of predicate logic.

Without further ado, here is how to interpret the truth value of a
proposition. Again, this definition is difficult, so I have placed it on its
own page for maximum readability.

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 31

Definition 3.2.1. If ϕ is a proposition and [x1: v1, . . . , xn: vn] is an
assignment of variables not bound in ϕ containing the free variables of
ϕ, then the truth value of [x1: v1, . . .]ϕ is inductively defined as:

(1) Suppose ϕ is of the form ⊥. Then the truth value [x1: v1, . . .]ϕ
is false. A notion of false is required in your interpretation.

(2) Suppose ϕ is of the form (y ∈ z) for variables y and z. Since y
and z are the free variables in ϕ, y is some xi and z is some xj.
The truth value [x1: v1, . . .]ϕ represents vi ∈ vj, whether the set
corresponding to y is an element of the set corresponding to z.
This understanding is a required part of your understanding of
sets.

(3) Suppose ϕ is of the form (ψ∧χ) for propositions ψ and χ. Then,
the truth value [x1: v1, . . .]ϕ is the truth value

[x1: v1, . . .]ψ ∧ [x1: v1, . . .]χ

as given by the truth table.
(4) Suppose ϕ is of the form (ψ∨χ) for propositions ψ and χ. Then,

the truth value [x1: v1, . . .]ϕ is the truth value

[x1: v1, . . .]ψ ∨ [x1: v1, . . .]χ

as given by the truth table.
(5) Suppose ϕ is of the form (ψ ⇒ χ) for propositions ψ and χ.

Then, the truth value [x1: v1, . . .]ϕ is the truth value

[x1: v1, . . .]ψ ⇒ [x1: v1, . . .]χ

as given by the truth table.
(6) Suppose that ϕ is of the form (∀y. ψ) for a proposition ψ and

a variable y. Since the variables x1, . . . , xn are not bound in
ϕ and y is bound in ϕ, the variable y does not appear in the
list x1, . . . , xn. The truth value [x1: v1, . . .]ϕ is true if for every
extended variable assignment [x1: v1, . . . , xn: vn, y:u],

[x1: v1, . . . , xn: vn, y:u]ψ

is true, and is false otherwise.
(7) Suppose that ϕ is of the form (∃y. ψ) for a proposition ψ and

a variable y. Since the variables x1, . . . , xn are not bound in ϕ
and y is bound in ϕ, the variable y does not appear in the list
x1, . . . , xn. The truth value [x1: v1, . . .]ϕ is true if there exists
some extended variable assignment [x1: v1, . . . , xn: vn, y:u] such
that

[x1: v1, . . . , xn: vn, y:u]ψ

is true, and is false otherwise.

32 DAVIS DEATON

It is also pertinent to note the way that variable assignments interop-
erate with propositions with omitted parentheses. We choose to place
variable assignment at the very beginning of the order of operations,
which often means that we need to write parentheses. That is, for a
variable x, a set v, and propositions ϕ and ψ, [x: v]ϕ ∧ ψ is not a valid
truth value because the variable assignment only applies to ϕ. Instead,
we must write [x: v](ϕ ∧ ψ).

While the definition of variable assignments may seem complicated,
they are not so bad. Essentially, the rules just say “move the variable
assignment through parentheses, duplicate them over operators, and
apply them to variables.” To demonstrate this, we shall work examples.

Example 3.2.2. Suppose u and v are sets.

(1) [a:u, b: v](a ∈ b) is the value of u ∈ v.
(2) [a:u, b: v, c:u](a ∈ b ∧ b ∈ c) is the value of u ∈ v ∧ v ∈ u.
(3) [a:u](∀a. a ∈ a) is not valid, since we many only assign free

variables.
(4) [a:u](∀b. a ∈ b⇒ a ∈ a) is true if for every set v, u ∈ v ⇒ u ∈ u

and is false otherwise.

Although I have not marked definition 3.2.1 as informal, I seriously
considered doing so. This definition relies on the informal notions of
sets, elements, implication, existence, etc. In particular, we have no
way of syntactically representing a set. That is, we have not agreed
upon any way of writing down a set. However, this list of notions can
be given a precise interpretation inside another logic whose domain of
discourse includes these logical symbols and predicates such as “is a
proposition,” “is a variable,” and so on. Such a logic would be called
a second-order logic because its variables are able to represent logical
symbols, while ours is simply a first-order logic. Unfortunately, such
a system would either rely on informal notions or higher-order logic,
which would eventually rely on informal notions.

We are already working in a second-order system because we have
made claims such as (ϕ ∧ ⊥) is a proposition for all propositions ϕ. In
particular, we have been using variables such as ϕ, ψ, and χ to represent
arbitrary first-order propositions. This indicates that we do not have a
formal notion of first-order logic, but the definition we have is as close
to formal as is possible.

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 33

3.3. Shorthand. Since we are already working in a second-order sys-
tem, we might as well define useful extensions to the syntax of proposi-
tions. I am not going to mark these definitions as informal, even though
we have not formalized any second-order system, because they would
easily be formalizable if we were working in a second-order system.

We will start with the most difficult and most useful extension. It
is called exchange of variables or α conversion5 and (unsurprisingly)
allows exchanging variables for other variables.

Definition 3.3.1. For a proposition ϕ and variables x and y, the
proposition [x: y]ϕ, read as “x replaced with y in ϕ” is inductively
defined by:

(1) Suppose ϕ is of the form ⊥. Then, [x: y]ϕ is the proposition ⊥.
(2) Suppose ϕ is of the form (z ∈ w) for variables z and w. Then,

[x: y]ϕ is the proposition:
• (z ∈ w) if neither z nor w is x.
• (y ∈ w) if z is x and w is not x.
• (z ∈ y) if z is not x and w is x.
• (y ∈ y) if both z and w are x.

(3) Suppose ϕ is of the form (ψ∧χ) for propositions ψ and χ. Then,
[x: y]ϕ is the proposition ([x: y]ψ ∧ [x: y]χ).

(4) Suppose ϕ is of the form (ψ∨χ) for propositions ψ and χ. Then,
[x: y]ϕ is the proposition ([x: y]ψ ∨ [x: y]χ).

(5) Suppose ϕ is of the form (ψ ⇒ χ) for propositions ψ and χ.
Then, [x: y]ϕ is the proposition ([x: y]ψ ⇒ [x: y]χ).

(6) Suppose ϕ if of the form (∀z. ψ) for a proposition ψ and a
variable z. Then, [x: y]ϕ is:
• (∀z. ([x: y]ψ)) if the variable z is not the variable x.
• (∀y. ([x: y]ψ)) if the variable z is the variable x.

(7) Suppose ϕ if of the form (∃z. ψ) for a proposition ψ and a
variable z. Then, [x: y]ϕ is:
• (∃z. ([x: y]ψ)) if the variable z is not the variable x.
• (∃y. ([x: y]ψ)) if the variable z is the variable x.

In summary, [x: y]ϕ is the proposition ϕ with every occurrence of the
variable x replaced with the variable y. Importantly, this notation is
only defined when the resulting proposition follows the rules for free
and bound variables and is thus a valid proposition.

Take note of the many similarities between variable assignment and
variable replacement. Variable assignment and variable replacement are
effectively the same thing; the only difference is that variable assignment

5α is the lowercase Greek letter alpha.

34 DAVIS DEATON

replaces variables with sets while variable replacement replaces variables
with other variables. Thus, we use similar notation for both, and we
put them both at the beginning of the order of operations (variable
replacement is performed before everything else). That is, [x: y]ϕ ∧ ψ
means that the variable replacement applies only to ϕ, while in the
parenthesized expression [x: y](ϕ ∧ ψ), it applies to both. The only
other important difference is that we may replace bound variables.

Let us consider the proposition [a: c](a ∈ b), read as “a replaced with
c in a ∈ b.” This is supposed to replace the a in a ∈ b with c, yielding
the proposition c ∈ b. As another example, [a: c](∀a. a ∈ b) represents
the proposition ∀c. c ∈ b. Here, we have replaced the bound variable
a with the variable c. However, [b: a](∀b.∀a. a ∈ b), which represents
∀a.∀a. a ∈ a, which is not a valid proposition because it quantifies a
twice, is not a valid variable substitution. One solution to avoid this
problem and others like it is to avoid using bound variables to replace
other variables. This is sometimes permissible though. For example,
[b: a](∀a. a ∈ c ⇒ ∀b. b ∈ c) represents the proposition (∀a. a ∈ c ⇒
∀a. a ∈ c), which is valid.

From these examples, we can discover the rules for the free and bound
variables of [x: y]ϕ. In particular, a variable is free or bound in [x: y]ϕ if
it is a variable free or bound in ϕ and is not the variable x (so it is not
involved in the replacement) or if it is the variable y and x is free or
bound in ϕ. As a consequence x is always unused in [x: y]ϕ unless x and
y are the same variable (in which case the replacement does nothing
anyway). As a final note, since the variable replacement syntax is not
part of predicate logic, [a: b](a ∈ c) is the same proposition as b ∈ c
even though they are written differently.

Next, we will present what is perhaps the easiest piece of additional
syntax. Note that we have a proposition ⊥ that represents a false
statement. It is natural to want a proposition for a true statement as
well.

Definition 3.3.2. The proposition >, read as “true,” is shorthand for
the proposition ⊥ ⇒ ⊥. That is,

>: (⊥ ⇒ ⊥).

Thus, true (>) is shorthand for false implies false. I’m not really
sure why the philosophers have been looking so long for a definition
of truth when they could simply use this one. We agreed earlier that
F ⇒ F is T as a truth value, so then this proposition > must be a true
proposition. In fact, if we did not agree that true and false were the
only truth values, we could use this as the definition of true.

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 35

Similarly, if ϕ is a proposition, it is natural to want a proposition
representing that ϕ is false.

Definition 3.3.3. For a proposition ϕ, the negation of ϕ, denoted as
ϕ¬ and read as “ϕ not,” is shorthand for the proposition ϕ⇒ ⊥. That
is,

ϕ¬ : (ϕ⇒ ⊥).

We agreed earlier that p⇒ F is true when p is false and is false when
p is true. Thus, ϕ¬, that is ϕ⇒ ⊥, must be the opposite or negation of
ϕ. We choose to place ¬ just after ∈ in the order of operations so that
ϕ ∧ ψ¬ is ϕ ∧ (ψ ⇒ ⊥) rather than (ϕ ∧ ψ)⇒ ⊥. With this definition,
true is not false. That is, > and ⊥¬ are the same proposition.

We will also define special shorthand for the negation of ∈. We will
not use this shorthand for awhile, but keep it in your mind.

Definition 3.3.4. For variables x and y, the proposition x /∈ y, read
as “x is not an element of y” or “x not in y,” is shorthand for the
proposition (x ∈ y)¬. That is,

x /∈ y: (x ∈ y)¬.

We will also define one additional connective for joining propositions.

Definition 3.3.5. For propositions ϕ and ψ, the equivalence of ϕ and
ϕ, denoted as ϕ ⇔ ψ read as “ϕ if and only if ψ,” and sometimes
spelled “ϕ iff ψ,” is shorthand for the proposition (ϕ⇒ ψ) ∧ (ψ ⇒ ϕ).
That is,

ϕ⇔ ψ: (ϕ⇒ ψ) ∧ (ψ ⇒ ϕ).

Since ϕ⇒ ψ is the proposition meaning that the truth of ϕ guarantees
the truth of ψ and ψ ⇒ ϕ is the proposition meaning that the truth
of ψ guarantees the truth of ϕ, ϕ ⇔ ψ: (ϕ ⇒ ψ) ∧ (ψ ⇒ ϕ) is the
proposition meaning that ϕ and ψ guarantee the truth of each other.
That is, they are only true or false together. In that sense, if ϕ⇔ ψ is
true, then ϕ and ψ are essentially the same statement. While they may
not be equal, if ψ ⇔ ψ, ϕ and ψ are called equivalent.

We place ⇔ after ⇒ in the order of operations, so that ϕ ⇒ ψ ⇔
ψ ⇒ χ is (ϕ ⇒ ψ) ⇔ (ψ ⇒ χ) and ∀x. ϕ ⇔ ψ is (∀x. ϕ) ⇔ ψ. We
do not, however, provide associativity rules for ⇔. This is because we
define some special shorthand for these cases.

Definition 3.3.6. For a sequence of at least two propositions ϕ1, . . . , ϕn,
we define

ϕ1 ⇔ ϕ2 ⇔ · · · ⇔ ϕn:ϕ1 ⇔ ϕ2 ∧ ϕ2 ⇔ ϕ3 ∧ · · · ∧ ϕn−1 ⇔ ϕn.

36 DAVIS DEATON

In particular, ϕ ⇔ ψ ⇔ χ is the proposition ϕ ⇔ ψ ∧ ψ ⇔ χ.
Intuitively, this says that ϕ, ψ, and χ each guarantee the truth of each
other.

Next, we define some notation with sequence of variables so that we
have to write less.

Definition 3.3.7. For a proposition ϕ and a sequence of variables
x1, . . . , xn, we define

∀x1, . . . , xn. ϕ : ∀x1.∀x2. · · · ∀xn. ϕ.
If n is 0, ∀x1, . . . , xn should be interpreted as just ϕ.

Definition 3.3.8. For a proposition ϕ and a sequence of variables
x1, . . . , xn, we define

∃x1, . . . , xn. ϕ : ∃x1.∃x2. · · · ∃xn. ϕ.
If n is 0, ∃x1, . . . , xn should be interpreted as just ϕ.

This shorthand allows us to avoid writing a bunch of quantifiers
over and over again, which makes reading easier. That is, instead of
∀x.∀y.∀z., we can just write ∀x, y, z., which has the same meaning.

Finally, we also define shorthand for combined variable replacement.

Definition 3.3.9. For a proposition ϕ and two sequences of variables
x1, . . . , xn and y1, . . . , yn of the same length, we define

[x1: y1, x2: y2, . . . , xn: yn]ϕ: [x1: y1][x2: y2] · · · [xn: yn]ϕ

whenever the right side is a valid proposition. If n is 0, []ϕ should be
interpreted as just ϕ.

With this notation, we can perform multiple substitutions at the
“same time.” That is, we can write [a: c, b: c](a ∈ b) to get (c ∈ c) and
can even pull off a “swap” with [c: b, b: a, a: c](a ∈ b) to get (b ∈ a).

3.4. Formal Proofs. The last part of formal logic that we will need is
the notion of a formal proof. A formal proof is a mathematical object
which has assumptions, which are propositions, and conclusions, which
are also propositions, combined with some sort of justification. The
idea behind a formal proof is that it is a demonstration that if the
assumptions are true, then so is the conclusion.

Formal proofs are not common in mathematics. As mentioned, we
will primarily rely on prose proofs. Consequently, we will be a bit more
“fast and loose” in this section than in others, and will not prove every
stated result. Further, we are not going to spend the time to develop a
definition of formal proof. Those interested in the details should consult
the readings at the end of the section.

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 37

As is standard in this thesis, we will build formal proofs inductively
in terms of fundamental proofs: rules and axioms. These rules and
axioms may be valid or invalid depending on the semantics of logic that
you choose. This thesis will only be concern with logics with these rules
and axioms.

Rule 3.1. The rule of implication elimination states that if ϕ and ψ
are propositions, then ϕ and ϕ⇒ ψ prove ψ. This is denoted as

ϕ ϕ⇒ ψ
⇒elim.

ψ

which can be read as “ϕ and ϕ⇒ ψ prove ψ by ⇒ elimination.”

This rule, and all other rules and axioms, are assumed to hold only
when all propositions involved are valid. In this case, ϕ⇒ ψ must be a
proposition according to the rules for free and bound variables.

This is our first example of the structure of a proof. The propositions
above the horizontal line are called the assumptions. Here, we have two
assumptions, ϕ and ϕ ⇒ ψ. The proposition under the line is called
the conclusion. Here, our conclusion is ψ. The writing to the right of
the line is called the rule. This rule explains why the proof is valid.
Here, our rule is implication elimination.

A proposition ϕ is not something that can be true or false; only
when it is assigned variables does it become true or false. When we
have a rule like this, it is assumed to hold of all variable assignments.
Further, the same variable assignment must be applied to each of the
assumptions and conclusions. As a consequence, any variable bound in
any of the assumptions or conclusion of a proof cannot be free in any
of the other assumptions or the conclusion.

Since any rule must be valid under any variable assignment, let us
investigate ⇒ elimination using a truth table. Let p and q stand for
the truth values of ϕ and ψ respectively under a variable assignment
[x1: v1, . . .].

p q p⇒ q
T T T
T F F
F F T
F F T

Intuitively, the rule of implication elimination says that in every row
our assumptions (here, p and p⇒ q) are true, so is our conclusion (here,
q). The first row is the only row where both p and p⇒ q are true, and
q is also true in this row. This means that our rule is sound in respect
to our semantics. If we chose different semantics (meaning our truth

38 DAVIS DEATON

table might look different), then this rule might not be justified. All of
our rules will be sound according to our semantics.

We can use this rule to construct larger proofs. We will do so in
order to prove a theorem. A theorem is simply an important fact that
is true. Theorems are generally accompanied by proofs, whether formal
or prose.

Theorem 3.4.1. If ϕ, ψ, and χ are propositions, then ϕ, ψ, and
ϕ⇒ ψ ⇒ χ prove χ. That is,

ϕ ψ ϕ⇒ ψ ⇒ χ
3.4.1

χ .

Before we present the proof, recall that ϕ⇒ ψ ⇒ χ is (ϕ⇒ (ψ ⇒ χ)).
Also, notice that rather than a rule, we have placed our theorem number
here. This is done instead of a name when the theorem is not important
enough to name.

Proof.

ψ

ϕ ϕ⇒ ψ ⇒ χ
⇒elim.

ψ ⇒ χ
⇒elim.

χ

�

This is our first non-trivial formal proof. Let us investigate its
structure. First, there are three propositions without lines above them:
ϕ, ψ, and ϕ ⇒ ψ ⇒ χ. These are the assumptions, which match the
assumptions of the theorem. Next, there is exactly one proposition
with no line under it: χ. This is our conclusion, which matches the
conclusion of the theorem. Each horizontal line represents a rule. Let
us take note of two special cases of implication elimination:

ϕ ϕ⇒ ψ ⇒ χ
⇒elim

ψ ⇒ χ and

ψ ψ ⇒ χ
⇒elim

χ .

The left proof is implication elimination where ϕ is the proposition ϕ
and ψ is the proposition ψ ⇒ χ. One should confirm that this is exactly
the same as the definition of the rule with each occurrence of ψ replaced
with ψ ⇒ χ. Similarly, the right proof is implication elimination where
ϕ is replaced with ψ and ψ is replaced with χ. Notice that the left
proof has a conclusion of ψ ⇒ χ and the right proof has an assumption
of ψ ⇒ χ. We can glue these two proofs together along this shared
copy of ψ ⇒ χ to get a larger proof. This is exactly what we did to
construct the proof of our theorem.

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 39

Let us now prove a similar theorem.

Theorem 3.4.2. If ϕ, ψ, and χ are propositions, then ϕ, ϕ⇒ ψ, and
ϕ⇒ ψ ⇒ χ prove χ. That is,

ϕ ϕ⇒ ψ ϕ⇒ ψ ⇒ χ
3.4.2

χ .

Proof.
ϕ ϕ⇒ ψ

⇒elim.
ψ

ϕ ϕ⇒ ψ ⇒ χ
⇒elim.

ψ ⇒ χ
⇒elim.

χ .

�

Notice that in this proof, we appear to have four assumptions: ϕ,
ϕ⇒ ψ, ϕ, and ϕ⇒ ψ ⇒ χ. Fortunately, this is okay, for ϕ is repeated
in this list. This is still a valid proof, even though we have used
the assumption of ϕ twice. Similarly, we do not have to use every
assumption. For example, the same proof as that for theorem 3.4.2
proves the following theorem.

Theorem 3.4.3. For propositions ϕ, ψ, and χ,

ϕ ϕ⇒ ψ ϕ⇒ ψ ⇒ χ χ⇒ ψ

χ .

This is an example of a theorem that is so unimportant, we do not
even write a rule next to it. Generally, this is done when the theorem
exists only for pedagogical purposes, rather than as a mathematical
tool.

Although our proof of theorem 3.4.2 did not use the new assumption
χ⇒ ψ, we did not need to use the assumption to prove our conclusion.
Thus our proof of theorem 3.4.2 is still sufficient for this theorem. Logic
where each assumption must be used exactly once is called linear logic.
Such logic is interesting, but will not be covered here.

Next, we will speak of axioms. Axioms are rules with no assumptions.
We will have one or more axioms for each way of building propositions,
except for ∈, whose axioms will be given in the section on set theory.

Axiom 3.2. For a proposition ϕ,

⊥
⊥ ⇒ ϕ .

Since this is the only axiom for ⊥, we just call this axiom ⊥.

40 DAVIS DEATON

Let us investigate this axiom using a truth table. Let p denote the
truth value of ϕ (under a variable assignment).

p F ⇒ p
T T
F T

Notice that the last column is entirely true. This means that the
conclusion ⊥ ⇒ ϕ holds regardless of the truth value of ϕ. If the axiom
has this property, then it is called sound in respect to our semantics.
All of our axioms will be sound in respect to our semantics.

This axiom yields an easy theorem.

Theorem 3.4.4. The explosion principle says that a contradiction
implies any proposition. That is, for a proposition ϕ,

⊥
explos.

ϕ .

Proof.

⊥
⊥

⊥ ⇒ ϕ
⇒elim.

ϕ

�

This theorem states that any conclusion follows from a falsehood. In
other words, as soon as we accept one contradiction, our entire logical
universe “explodes” into everything being true. If all propositions are
true, mathematics becomes uninteresting and useless. Thus, we avoid
accepting contradictions.

There is an even easier theorem that this axiom provides.

Theorem 3.4.5. True is always true. That is,

>
> .

Proof. Recall that > is defined as ⊥ ⇒ ⊥.

⊥
⊥ ⇒ ⊥ .

�

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 41

Next, we will present the three axioms for ∧.

Axiom 3.3. The axiom of left ∧ elimination states that for propositions
ϕ and ψ,

L∧elim.
ϕ ∧ ψ ⇒ ϕ .

Axiom 3.4. The axiom of right ∧ elimination states that for proposi-
tions ϕ and ψ,

R∧elim.
ϕ ∧ ψ ⇒ ψ .

Axiom 3.5. The axiom of ∧ introduction states that for propositions
ϕ and ψ,

∧intro.
ϕ⇒ ψ ⇒ ϕ ∧ ψ .

Left ∧ elimination, in essence, states that if ϕ ∧ ψ is true, so is ϕ.
That is, if ϕ and ψ are true, then ϕ is true. Let us verify this axiom
with a truth table. Let p represent the truth value of ϕ and q represent
the truth value of ψ.

p q p ∧ q p ∧ q ⇒ p
T T T T
T F F T
F T F T
F F F T

Notice that the last column is all true. This demonstrates that left ∧
elimination is sound.

Right ∧ elimination states the same for ψ. ∧ introduction states that
the truth of ϕ guarantees that the truth of ψ guarantees the truth of
ϕ ∧ ψ.

Exercise 3.4.1. Verify the soundness of right ∧ elimination and ∧
introduction using a truth table.

One can interpret ∧ introduction as stating that ϕ and ψ together
guarantee ϕ ∧ ψ. Let us show this by constructing a new proof.

Theorem 3.4.6. For propositions ϕ and ψ, ϕ and ψ prove ϕ∧ψ. That
is,

ϕ ψ
3.4.6

ϕ ∧ ψ .

Proof. We can produce two special version of ⇒ elimination,

ψ ψ ⇒ ϕ ∧ ψ
⇒elim.

ϕ ∧ ψ and

ϕ ϕ⇒ ψ ⇒ ϕ ∧ ψ
⇒elim.

ψ ⇒ ϕ ∧ ψ .

42 DAVIS DEATON

Notice that our two proofs both include ψ ⇒ ϕ ∧ ψ. We can glue our
proofs along ψ ⇒ ϕ ∧ ψ to get

ψ

ϕ ϕ⇒ ψ ⇒ ϕ ∧ ψ
⇒elim.

ψ ⇒ ϕ ∧ ψ
⇒elim.

ϕ ∧ ψ .

This proof has the conclusion we seek, ϕ ∧ ψ, and has three assump-
tions: ϕ, ψ, and ϕ ⇒ ψ ⇒ ϕ ∧ ψ. This last assumption is undesired.
Fortunately, this is the conclusion of the axiom of ∧ introduction. Thus,
we can create a complete proof that ϕ and ψ prove ϕ ∧ ψ.

ψ

ϕ
∧intro.

ϕ⇒ ψ ⇒ ϕ ∧ ψ
⇒elim.

ψ ⇒ ϕ ∧ ψ
⇒elim.

ϕ ∧ ψ .

�

Exercise 3.4.2. Construct a formal proof that ϕ ∧ ψ proves ϕ.

Altogether, these three axioms of ∧ essentially specify its entire
behavior. In particular, they state that ϕ and ψ prove the combined
proposition ϕ∧ψ, and that the combined proposition ϕ∧ψ proves both
ϕ and ψ. Regardless of whether or not you believe in the semantics of
truth values, these axioms should still be valid in whatever semantics
you choose.

An important consequence is that ∧ must always be symmetric, which
is to say that ϕ ∧ ψ and ψ ∧ ϕ are effectively the same proposition.

Theorem 3.4.7. For propositions ϕ and ψ,

ϕ ∧ ψ
∧sym.

ψ ∧ ϕ .

Proof.

ϕ ∧ ψ
L∧elim.

ϕ ∧ ψ ⇒ ψ
⇒elim.

ψ

ϕ ∧ ψ
R∧elim.

ϕ ∧ ψ ⇒ ϕ
⇒elim.

ϕ
3.4.6

ψ ∧ ϕ
�

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 43

Next, we will define the three axioms of ∨.

Axiom 3.6. The axiom of left ∨ introduction states that for proposi-
tions ϕ and ψ,

L∨intro.
ϕ⇒ ϕ ∨ ψ .

Axiom 3.7. The axiom of right ∨ introduction states that for proposi-
tions ϕ and ψ,

R∨intro.
ψ ⇒ ϕ ∨ ψ .

Axiom 3.8. The axiom of ∨ elimination states that for propositions
ϕ, ψ, and χ,

∨elim.
(ϕ⇒ χ)⇒ (ψ ⇒ χ)⇒ ϕ ∨ ψ ⇒ χ .

The first two axioms are straightforward; they claim that ϕ and ψ
both individually prove ϕ∨ψ. That is, if ϕ is true, so is ϕ∨ψ, and the
same with ψ. The third axiom is less trivial. And further, why should
that be called elimination? This axiom can be interpreted as follows:

Suppose you know that ϕ ⇒ χ and ψ ⇒ χ, but you
don’t know ϕ and you don’t know ψ. This axiom states
that it is enough to know ϕ ∨ ψ to conclude χ.

This allows “eliminating” an occurrence of ∨ for an occurrence of χ.
We can present this as a theorem.

Theorem 3.4.8. For propositions ϕ, ψ, and χ,

ϕ⇒ χ ψ ⇒ χ ϕ ∨ ψ
3.4.8

χ .

Proof.

ϕ ∨ ψ
ψ ⇒ χ

ϕ⇒ χ
∨elim.

(ϕ⇒ χ)⇒ (ψ ⇒ χ)⇒ ϕ ∨ ψ ⇒ χ
⇒elim.

(ψ ⇒ χ)⇒ ϕ ∨ ψ ⇒ χ
⇒elim.

ϕ ∨ ψ ⇒ χ
⇒elim.

χ

�

Exercise 3.4.3. Verify these axioms with truth tables.

Theorem 3.4.9. For propositions ϕ and ψ,

ϕ ∨ ψ
∨sym.

ψ ∨ ϕ .

Exercise 3.4.4. Prove this theorem.

44 DAVIS DEATON

Next, there are two axioms for ⇒.

Axiom 3.9. The axiom of ⇒ introduction states that for propositions
ϕ and ψ,

⇒intro.
ϕ⇒ ψ ⇒ ϕ .

In effect, this axiom asserts that if ϕ is true, then ψ ⇒ ϕ is true.
Intuitively, this means that the truth of ϕ guarantees that the truth
of ψ guarantees the truth of ϕ. This is because if we are guaranteed
that ϕ is true, we do not even need ψ to conclude that ϕ is true. Let
us investigate the claim using a truth table. Let p and q be the truth
values of ϕ and ψ respectively.

p q q ⇒ p p⇒ q ⇒ p
T T T T
T F T T
F T F T
F F T T

This last column is all true, and so this axiom is sound.
Now, we present the final axiom of implication.

Axiom 3.10. The axiom of transitivity states that for propositions ϕ,
ψ, and χ,

trans.
(ϕ⇒ ψ ⇒ χ)⇒ (ϕ⇒ ψ)⇒ (ϕ⇒ χ) .

The truth table for this axiom is much more complicated, much too
massive for me to ask you to make. In fact, it is so massive that I will
take advantage of the only landscape page in this thesis.

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 45

p
q

r
q
⇒

r
p
⇒

q
⇒

r
p
⇒

q
p
⇒

r
(p
⇒

q)
⇒

(p
⇒

r)
(p
⇒

q
⇒

r)
⇒

(p
⇒

q)
⇒

(p
⇒

r)
T

T
T

T
T

T
T

T
T

T
T

F
F

F
T

F
F

T
T

F
T

T
T

F
T

T
T

T
F

F
T

T
F

F
T

T
F

T
T

T
T

T
T

T
T

F
T

F
F

T
T

T
T

T
F

F
T

T
T

T
T

T
T

F
F

F
T

T
T

T
T

T

H
er

e,
p,
q,

an
d
r

re
p
re

se
n
t

th
e

tr
u
th

va
lu

es
of
ϕ

,
ψ

,
an

d
χ

re
sp

ec
ti

ve
ly

.
A

s
b

ef
or

e,
th

e
la

st
co

lu
m

n
is

al
l

tr
u
e,

re
p
re

se
n
ti

n
g

th
at

th
is

st
at

em
en

t
is

tr
u
e

re
ga

rd
le

ss
of

th
e

tr
u
th

of
p,
q,

or
r,

an
d

th
u
s

th
at

ou
r

ax
io

m
is

so
u
n
d
.

T
h
is

ta
b
le

h
as

ei
gh

t
ro

w
s

b
ec

au
se

w
e

h
av

e
th

re
e

fu
n
d
am

en
ta

l
tr

u
th

va
lu

es
:
p,
q,

an
d
r.

E
ac

h
tr

u
th

va
lu

e
h
as

tw
o

p
os

si
b
le

op
ti

on
s,

so
w

e
n
ee

d
ei

gh
t

ro
w

s
to

ac
co

u
n
t

fo
r

ev
er

y
co

m
b
in

at
io

n
of

th
ei

r
tr

u
th

va
lu

es
.

L
et

u
s

u
n
d
er

st
an

d
th

is
tr

u
th

ta
b
le

b
y

ex
am

in
in

g
a

ra
n
d
om

ro
w

,
sa

y
th

e
se

co
n
d
.

T
h
is

is
th

e
ca

se
w

h
er

e
p

is
tr

u
e,

q
is

tr
u
e,

an
d
r

is
fa

ls
e.

T
h
e

fo
u
rt

h
co

lu
m

n
sa

y
s

th
at
q
⇒

r
is

fa
ls

e,
w

h
ic

h
is

co
rr

ec
t

b
ec

au
se

tr
u
e

(q
)

d
o
es

n
ot

im
p

ly
fa

ls
e

(r
).

S
in

ce
q
⇒

r
is

fa
ls

e
b

u
t
p

is
tr

u
e,

th
e

fi
ft

h
co

lu
m

n
sa

y
s

th
at
p
⇒

q
⇒

r
is

fa
ls

e
to

o.
T

h
e

si
x
th

an
d

se
ve

n
th

co
lu

m
n
s

ar
e

th
e

va
lu

es
fo

r
p
⇒

q
an

d
p
⇒

r,
th

e
fo

rm
er

of
w

h
ic

h
is

tr
u
e

an
d

th
e

la
tt

er
of

w
h
ic

h
is

fa
ls

e.
T

h
u

s,
(p
⇒

q)
⇒

(p
⇒

r)
is

fa
ls

e,
si

n
ce

it
is

tr
u

e
im

p
li

es
fa

ls
e.

T
h

is
is

re
co

rd
ed

in
th

e
ei

gh
th

co
lu

m
n

.
F

in
al

ly
,

th
e

te
n
th

co
lu

m
n

is
m

ar
ke

d
as

tr
u
e

b
ec

au
se

fa
ls

e
(p
⇒

q
⇒

r)
im

p
li
es

fa
ls

e
((
p
⇒

q)
⇒

(p
⇒

r)
).

A
ga

in
,

th
is

ju
st

ifi
ca

ti
on

re
li

es
on

th
e

se
m

an
ti

cs
of

tr
u

th
va

lu
es

,
b

u
t

it
sa

y
s

th
at

th
os

e
se

m
an

ti
cs

w
il

l
ag

re
e

w
it

h
th

es
e

se
m

an
ti

cs
.

T
h
er

e
is

an
ot

h
er

in
tu

it
io

n
w

e
ca

n
u
se

in
st

ea
d
.

T
h
e

cl
ai

m
of

th
e

ax
io

m
is

th
at

(ϕ
⇒

ψ
⇒

χ
)
⇒

(ϕ
⇒

ψ
)
⇒

(ϕ
⇒

χ
).

W
e

co
u
ld

re
ad

th
is

in
E

n
gl

is
h

as
“t

h
at
ϕ

gu
ar

an
te

es
th

at
ψ

gu
ar

an
te

es
χ

im
p
li
es

th
at

if
ϕ

im
p
li
es
ψ

,
th

en
ϕ

al
so

im
p
li
es
χ

.”
H

op
ef

u
ll
y

re
ad

in
g

th
is

se
n
te

n
ce

to
yo

u
rs

el
f

se
ve

n
or

ei
gh

t
ti

m
es

w
il
l

co
n
v
in

ce
yo

u
of

th
e

ax
io

m
.

46 DAVIS DEATON

These two axioms of ⇒ are incredibly important. Notice that so far,
we only have one rule, and all of our axioms are defined in terms of ⇒.
A consequence is the following theorem.

Theorem 3.4.10. The deduction theorem states that for a sequence of
propositions ϕ1, ψ2, . . . , ϕn and another proposition ψ,

ϕ1 ϕ2 · · · ϕn

ψ if and only if ϕn ⇒ ϕn−1 ⇒ · · · ⇒ ϕ1 ⇒ ψ .

This is to say, if one can prove ψ from the assumption ϕ1 . . . ϕn, then
one can prove ϕn ⇒ · · · ⇒ ϕ1 ⇒ ψ from no assumptions, and vice
versa.

In short, one can “move” the assumptions of a theorem into the
conclusion using the ⇒ connective, and one can also move them back if
desired. This is one of the few theorems that I will not present a proof
of. The proof requires using a definition of a formal proof, which we
have not yet presented. If you wish to see a proof of this theorem, it
will be presented in any decent textbook on formal logic.

This theorem is important because it is often useful to prove a
statement one way, but use the other way. For example, we will present
this list of alternate forms of preexisting rules, axioms, and theorems.

•
ϕ ∧ ψ

L∧elim.
ϕ

•
ϕ ∧ ψ

R∧elim.
ψ

•
ϕ⇒ ψ ⇒ χ ϕ ∧ ψ

∧elim.
χ

•
ϕ ψ

∧intro.
ϕ ∧ ψ

•
ϕ

L∨intro.
ϕ ∨ ψ

•
ψ

R∨intro.
ϕ ∨ ψ

•
ϕ⇒ χ ψ ⇒ χ ϕ ∨ ψ

∨elim.
χ

•
ϕ

⇒intro.
ψ ⇒ ϕ

•
ϕ ϕ⇒ ψ ϕ⇒ ψ ⇒ χ

trans.
χ

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 47

Exercise 3.4.5. Use a truth table to convince yourself of the deduction
theorem for small values of n, maybe 1 and 2.

Exercise 3.4.6. Try to use something intrinsic about the structure of
proofs to convince yourself of the deduction theorem. This is difficult,
so do not be concerned if you get stuck.

The deduction theorem also gives us the following result.

Theorem 3.4.11. The identity theorem states that for a proposition
ϕ,

id.
ϕ⇒ ϕ .

This states that ϕ guarantees the truth of itself.

Proof. Although we have not discussed it, there is a straightforward
proof of the for the claim

ϕ
id.

ϕ .

This is just the proof
ϕ.

This may not look like a proof, but it has one proposition with no lines
above it (ϕ) and one proposition with no line below it (ϕ). Thus, this
is a proof with assumption ϕ and conclusion ϕ. Applying the deduction
theorem, we can move a copy of ϕ from an assumption to a conclusion
to find that

ϕ⇒ ϕ .

�

We will present one last important theorem of implication.

Theorem 3.4.12. For a propositions, ϕ, ψ, and χ,

ϕ⇒ ψ ψ ⇒ χ
⇒trans.

ϕ⇒ χ .

Intuitively, this states that if the truth of ϕ guarantees the truth of
ψ, and the truth of ψ guarantees the truth of χ, then the truth of ϕ
also guarantees the truth of χ.

Proof. Using the deduction theorem, we can instead prove

ϕ ϕ⇒ ψ ψ ⇒ χ

χ .

48 DAVIS DEATON

This proof is not difficult.

ϕ ϕ⇒ ψ
⇒elim.

ψ ψ ⇒ χ
⇒elim.

χ .

�

Next, we describe the behavior of our two quantifiers. Each one will
have a rule and an axiom. First, we begin with the universal quantifier.

Rule 3.11. The rule of ∀ introduction states that for propositions ϕ
and ψ, a variable x not free in ϕ, and a variable y not free in ϕ and
unused in ψ.

ϕ⇒ ψ
∀intro.

ϕ⇒ ∀y. [x: y]ψ .

In effect, this rule says that if we have knowledge of ϕ⇒ ψ (which
means that we have such knowledge for all possible variable assignments)
and ϕ does not depend on x (in effect, the value of x has no bearing
on the truth of ϕ), then we also have knowledge of ϕ ⇒ ∀x. ψ. In
a simple case, suppose that ϕ has a single free variable a and ψ has
two free variables a and b. Suppose also that we know ϕ ⇒ ψ for all
variable assignments. That is, we know [a:u, b: v]ϕ ⇒ [a:u, b: v]ψ for
all sets u and v. This is the same thing as saying [a:u]ϕ⇒ [a:u, b: v]ψ
because ϕ does not depend on the value of b. So for any sequence of
sets v1, . . ., we know that [a:u]ϕ⇒ [a:u, b: v1]ψ, [a:u]ϕ⇒ [a:u, b: v2]ψ,
[a:u]ϕ⇒ [a:u, b: v3]ψ, and so on. Thus, since this implication holds for
all values of b, it must also be that [a:u]ϕ⇒ [a:u](∀b. ψ).

In our rule, the variable x could be (and likely is) free in our assump-
tion (ϕ⇒ ψ). Thus, we cannot bind the variable x in our conclusion
(for then we could not apply the same variable assignments to the
assumption and conclusion). Therefore, we must change it out for
another variable, y. This variable should not be free in ϕ or ψ so that
it is not free in the assumptions and so that ϕ⇒ ∀y. [x: y]ψ is a valid
proposition. This variable should also not be bound in ψ so that it may
be used for quantification.

Axiom 3.12. The axiom of ∀ elimination states that for a proposition
ϕ and variables x and y not bound in ϕ,

∀elim.
∀y. [x: y]ϕ⇒ ϕ .

In effect, this axiom states that if we have knowledge of ∀x. ϕ, then
we also have knowledge of ϕ for every value of x. We require x to not

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 49

be bound in ϕ so that ∀x. ϕ is a valid proposition, and then switch
out the variable x with a variable y so that ∀y. [x: y]ϕ⇒ ϕ is a valid
proposition. This variable must not be bound so that this substitution
is valid.

We can use these axioms to prove one of the most important theorems
of quantifiers.

Theorem 3.4.13. The ∀ conversion theorem states that for a propo-
sition ϕ, a variable x not bound in ϕ, and a variable y unused in
ϕ,

∀x. ϕ
∀conv.

∀y. [x: y]ϕ .

Proof. Let z be a variable unused in ϕ. We will need this variable for
an intermediate substitution. Since x is not bound in ϕ and z is unused
in ϕ, both x and z are both not bound in [x: z]ψ. This allows us to
apply the ∀ elimination axiom,

∀elim.
∀x. [z:x][x: z]ϕ→ [x: z]ϕ .

Note that [z:x][x: z]ϕ is just ϕ. Further, y is not used in [x: z]ϕ, so we
can use the ∀ introduction rule

> ⇒ [x: z]ϕ
∀intro.

> ⇒ ∀y. [z: y][x: z]ϕ .

Here, note that [z: y][x: z]ϕ is just [x: y]ϕ. With this in mind, we can
construct our proof.

>
>

∀x. ϕ
∀elim.

∀x. [z:x][x: z]ϕ⇒ [x: z]ϕ
⇒elim.

[x: z]ϕ
⇒intro.

> ⇒ [x: z]ϕ
∀intro.

> ⇒ ∀y. [z: y][x: z]ϕ
⇒elim.

∀y. [x: y]ϕ

�

This says that we are allowed to switch out a quantified variable for
an unused variable. Intuitively, this makes sense because it should not
matter what the name of our quantified variable is.

50 DAVIS DEATON

The rule and axiom for the existential quantifier are similar.

Rule 3.13. The rule of ∃ elimination states that for propositions ϕ
and ψ, a variable x not free in ψ, and a variable y not free in ψ and
unused in ϕ.

ϕ⇒ ψ
∃elim.

∃y. [x: y]ϕ⇒ ψ .

This rule says that if we have knowledge of ϕ⇒ ψ (for all variable
assignments) and ψ does not depend on x, then the existence of one
assignment [x: v] such that ϕ also guarantees ψ. In a simple case,
suppose that ϕ has free variables a and b and ϕ has one free variables a.
Suppose also that we know ϕ⇒ ψ for all variable assignments. That
is, we know [a:u, b: v]ϕ⇒ [a:u, b: v]ψ for all sets u and v. This is the
same thing as saying [a:u, b: v]ϕ⇒ [a:u]ψ because ψ does not depend
on the value of b. So for any sequence of sets v1, . . ., we know that
[a:u, b: v1]ϕ⇒ [a:u]ψ, and so on. Thus, since this implication holds for
all values of b, it must also be that [a:u](∃b. ϕ)⇒ [a:u]ψ.

In our rule, the variable x could be (and likely is) free in our assump-
tion (ϕ⇒ ψ). Thus, we cannot bind the variable x in our conclusion
(for then we could not apply the same variable assignments to the
assumption and conclusion). Therefore, we must change it out for
another variable, y. This variable should not be free in ϕ or ψ so that
it is not free in the assumptions and so that ∃y. [x: y]ϕ⇒ ψ is a valid
proposition. This variable should also not be bound in ϕ so that it may
be used for quantification.

Axiom 3.14. The axiom of ∃ introduction states that for a proposition
ϕ and variables x and y not bound in ϕ,

∃intro.
ϕ⇒ ∃y. [x: y]ϕ

In effect, this axiom states that knowledge of ϕ yields knowledge
of ∃x. ϕ. We require x to not be bound in ϕ so that ∃x. ϕ is a valid
proposition, then switch out the variable x with a variable y so that
ϕ⇒ ∃y. [x: y]ϕ is a valid proposition. This variable must not be bound
so that this substitution is valid.

There is a conversion theorem for ∃ just like the one for ∀.
Theorem 3.4.14. The ∃ conversion theorem states that for a proposi-
tion ϕ and variables x, y not bound and unused respectively in ϕ,

∃x. ϕ
∃conv.

∃y. [x: y]ϕ .

Exercise 3.4.7. Prove this theorem.

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 51

There is actually a much stronger version of the conversion theorem.

Theorem 3.4.15. The conversion theorem states that for a proposition
ϕ, a variable x not free in ϕ, and a variable y unused in ϕ,

ϕ
conv.

[x: y]ϕ .

and that for propositions ϕ1, . . . , ϕn and ψ, a variable x, and a variable
y unused in the ϕ1, . . . , ϕn and in ψ,

ϕ1 · · · ϕn

ψ if and only if

[x: y]ϕ1 · · · [x: y]ϕn

[x: y]ψ .

The first part of this theorem states that if ϕ is a proposition and
x is not a free variable of ϕ, then we are free to replace the variable x
with any unused variable y without affecting the truth value under any
variable assignment. The second part of this theorem states that any
proof of a proposition does not depend on which variables in particular
are chosen in the proposition. That is, we can exchange a variable in a
proof for an unused one and still get a valid proof.

The proof of the first part of the theorem requires a proof by induction
over propositions. Such proofs are long, so we will only do one such
proof in the entire document. This will be the proof of the substitution
theorem. Thus, we will not formally prove the first part of the conversion
theorem. If you wish to prove it yourself, first observe the form of the
substitution theorem in the next section, and repeat a similar structure
for this proof. The intuition, however, is simple: If the variable x is
used in ϕ, since it is not free, it must be quantified somewhere. Apply
the particular conversion theorem required for that quantifier, and you
are good to go.

The proof of the second part of the theorem requires the full definition
of a proof. Since we do not have a full definition of a proof, we leave
a proof of the conversion theorem to other texts. However, again, the
intuition is simple: None of our rules or axioms depended on the specific
variables chosen. Thus, if you have a proof

ϕ1 · · · ϕn

ψ ,

simply exchange the variables at each step, leaving the individual steps
alone. This will result in a proof

[x: y]ϕ1 · · · [x: y]ϕn

[x: y]ψ .

52 DAVIS DEATON

Finally, I would like to discuss some properties of the equivalence
connective, ⇔.

Theorem 3.4.16. Equivalence is symmetric. That is, for propositions
ϕ and ψ,

ϕ⇔ ψ
⇔sym.

ψ ⇔ ϕ .

Intuitively, this states that if ϕ and ψ have the same truth value,
then ψ and ϕ have the same truth value. In essence, this follows from
the symmetry of ∧.

Exercise 3.4.8. Recalling the definition of ⇔, create a proof of this
theorem.

Theorem 3.4.17. Equivalence is reflexive. That is, for a proposition
ϕ,

⇔refl.
ϕ⇔ ϕ .

Intuitively, this states that ϕ has the same truth value as itself.

Proof.
id.

ϕ⇒ ϕ
∧intro

ϕ⇔ ϕ .

�

Notice that in this proof, the ∧ introduction only had one assumption.
This is because ϕ⇔ ϕ is (ϕ⇒ ϕ) ∧ (ϕ⇒ ϕ). Thus, our one proof of
ϕ⇒ ϕ provides both of the required assumptions.

Theorem 3.4.18. Equivalence is transitive. That is, for propositions
ϕ, ψ, and χ,

ϕ⇔ ψ ψ ⇔ χ
⇔trans.

ϕ⇔ χ .

Intuitively, this states that if ϕ and ψ have the same truth value, and
ψ and χ have the same truth value, then ϕ and χ have the same truth
value.

Proof.

ϕ⇔ ψ
L∧elim.

ϕ⇒ ψ

ψ ⇔ χ
L∧elim.

ψ ⇒ χ
⇒trans.

ϕ⇒ χ

ψ ⇔ χ
R∧elim.

χ⇒ ψ

ϕ⇔ χ
R∧elim.

ψ ⇒ ϕ
⇒trans.

χ⇒ ϕ
∧intro.

ϕ⇔ χ .

�

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 53

Formal proofs are not particularly important in the remainder of the
thesis, so do not worry if you find these rules or axioms difficult. This
content is presented here for two primary purposes: so that you can
see what axioms look like and so that you can say you’ve seen a formal
proof.

3.5. Recommended Reading. A much lighter introduction to the
concepts of logic and proof are presented in Devlin[2]. A more complete
introduction can be found in Magnus[9] (which is freely available online).
He covers all of this content, albeit with a slightly different perspective.
Additionally, I think he falls short in his discussion of proofs. A complete
discussion of proof theory can be found in Buss[1]. In particular, Buss
presents a short proof of the deduction theorem early on.

Another detailed discussion of both logic and proofs can be found
in Mints[10]. This book focuses on intuitionistic logic, which is the
subject I most regret not including. I highly recommend this text to
the dedicated reader, but I am not sure how approachable it is to a
beginner.

4. Set Theory

Now that we have covered a significant portion of logic, we can begin
discussing set theory. While predicate logic describes how mathemati-
cians are allowed to talk, set theory describes what mathematicians are
talking about. Set theory is the conventionally accepted foundation for
mathematics, although there are important alternatives such as type
theory. The particular instance of set theory we will use is essentially
the same as ZFC, an axiomatization of set theory named after mathe-
maticians Ernst Zermelo and Abraham Fraenkel (the ‘Z’ and the ‘F’).
The ‘C’ is for the axiom of choice, which we will discuss soon.

As defined informally earlier, a set is an unordered collection of other
sets, called elements, counted without repetition. These sets have one
predicate, ∈, representing if one set is an element of another. Practically
speaking, the elements of a set can be anything you want, but strictly
speaking, they are other sets. Discreetly, this implies that we are able
to encode anything we want as a set.

Because set theory is the foundation of mathematics, we cannot
formally define a set. Thus, you can come up with any notion of a set
that you want, and I’ll use that one, as long as it follow the axioms I
present in this section. The axioms in the last section described the
behavior of all types of propositions excluding ∈. Now, we will work
with this type of proposition in detail.

54 DAVIS DEATON

4.1. Equality. I have said that you must provide a notion of a set
(an unordered collection), but I have not said that you must provide
a notion of when two collections are “the same.” I will provide this
notion for you.

Definition 4.1.1. For variables x and y, define the proposition x = y,
read as “x equals y,” as shorthand for ∀z. (x ∈ z ⇔ y ∈ z) ∧ (z ∈ x⇔
z ∈ y) where z is any other variable. That is,

x = y:∀z. ((x ∈ z ⇔ y ∈ z) ∧ (z ∈ x⇔ z ∈ y)).

Generally, the variable z will be chosen not to conflict with the variables
in neighboring expressions. If we have a sequence of variables x1, . . . , xn,
then the proposition

x1 = x2 = · · · = xn
is shorthand for the proposition

(x1 = x2) ∧ (x2 = x3) ∧ · · · ∧ (xn−1 = xn).

We also define x 6= y, read as “x is not equal to y,” by

x 6= y: (x = y)¬.

This operator will appear alongside ∈ in the order of operations.
That is, two sets are equal when they both have the same elements

and are elements of the same sets. In other words, two sets are equal
when they cannot be distinguished by use of our only predicate ∈.

Intuitively, this is a good notion for equality of sets. However, I would
like to do better. Consider the following informal sets: the collection of
people with your full name born to parents of your full name and the
collection of people currently reading this thesis. I would imagine that
these collections both have exactly one element, that element being you.
I would like to suppose that these are the same collections.

This is not a necessity of a theory of sets. For example, the collections
could reasonably differ because of how they are defined. That is, you
are an element of the first set because of your name and your parents’
names, but you are an element of the second set because of your current
activity. These could reasonably be two different collections. This is
similar to how a white bag with two marbles is a different bag of marbles
from a brown bag with the same two marbles. As one final example,
it is conceivable that the set of even natural numbers and the set of
natural numbers whose last digit is a 0, 2, 4, 6, or 8 could be different
sets.

However, I would like to stipulate that a set is defined entirely by
its elements. That is, if two sets have the same elements, they are the

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 55

same set. In other words, the “packaging” does not matter. This is
expressed by the following axiom.

Axiom 4.1. The axiom of extensionality states that

ext.
∀a, b. (∀c. (c ∈ a⇔ c ∈ b)⇒ ∀c. (a ∈ c⇔ b ∈ c)) .

One should confirm that this axiom is a valid proposition and that
it has no free variables. Notice something special about this axiom:
nowhere did we have to state “for a proposition ϕ” or “for a variable x.”
Since propositions and variables are part of the language of propositions,
each of the prior axioms and rules have actually been axiom schemas.
This is the first axiom we have seen which has no second-order depen-
dence. Because this distinction is surface level, we will refer to both
axioms and axiom schemas as axioms. Also, we should note that we
could have specified this as an axiom schema by letting the variables a,
b, and c be arbitrary, but we can also just use the conversion theorems
to replace the variables in this proper axiom.

Literally, the axiom of extensionality states that if two sets have
the same elements, then they are elements of the same sets. Given
our definition of equality of sets, this axiom states that two sets are
equal whenever they have the same elements. That is, we cannot use
predicate logic to distinguish between sets with the same elements. We
can state this in the form of a theorem.

Theorem 4.1.2.

ext.
∀a, b. (∀c. (c ∈ a⇔ c ∈ b)⇒ a = b) .

Exercise 4.1.1. Use the corresponding theorems for ⇔ to prove the
following theorems of equality.

Theorem 4.1.3. For variables x and y,

x = y
=sym.

y = x .

Theorem 4.1.4. For a variable x,

=refl.
x = x .

Theorem 4.1.5. For variables x, y, and z,

x = y y = z
=trans.

x = z .

56 DAVIS DEATON

Now, I would like to present our first example of a proof by induction.
A proof by induction can be used to prove theorems about any inductive
construction. This will be the last proof in this thesis which uses the
language of formal proofs. Since inductive constructions are built using
recipes, a proof by induction proves the theorem for each recipe. In
general, however, this is too hard to do without assistance. That is,
these recipes have ingredients, and we might need to know something
about the ingredients to conclude something about the entire recipe.
This is codified by an induction principle. We will present proofs by
induction formally in a later section. For now, just try to observe this
one.

Theorem 4.1.6. For a proposition ϕ and variables x and y not bound
in ϕ,

sub.
x = y ⇒ ϕ⇒ [x: y]ϕ .

Proof. Using the deduction theorem, we can instead prove

x = y ϕ
sub.

[x: y]ϕ .

We proceed by induction on ϕ. In particular, this proof will depend on
the value of [x: y]ϕ, so our induction cases will be identical to those in
the definition of variable replacement.

(1) Suppose ϕ is of the form ⊥. Then, we are seeking to prove
[x: y]ϕ:⊥ from ϕ:⊥. Here, we use the explosion principle.

⊥
explos.

⊥
(2) Suppose ϕ is of the form z ∈ w for variables z and w. Then, we

have the following four sub-cases:
• If neither z nor w is x, we are seeking to prove [x: y]ϕ: z ∈ w

from ϕ: z ∈ w. Here, we use the identity proof.

z ∈ w
id.

z ∈ w
We could have used this same proof for the last case, but
the explosion principle is more fun.

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 57

• If z is x and w is not x, we are seeking to prove [x: y]ϕ: y ∈ w
from ϕ:x ∈ w. This is the first interesting case, for now
ϕ and [x: y]ϕ actually differ. Here, we must actually use
knowledge of x = y.

x ∈ w

x = y
∀elim.

(x ∈ w ⇔ y ∈ w) ∧ (w ∈ x⇔ w ∈ y)
L∧elim.

x ∈ w ⇔ y ∈ w
L∧elim.

x ∈ w ⇒ y ∈ w
⇒elim.

y ∈ w
• If z is not x and w is x, we are seeking to prove [x: y]ϕ: z ∈ y

from ϕ: z ∈ x. This proof is almost identical to the last
one.

Exercise 4.1.2. Mimic the form of the last proof to prove
this case.

• If both z and w are x, we are seeking to prove [x: y]ϕ: y ∈ y
from ϕ:x ∈ x. This proof is essentially a combination of the
two prior proofs. Fortunately, this proof is as complicated
as it gets.

x ∈ x

x = y
∀elim.

(x ∈ x⇔ y ∈ x) ∧ (x ∈ x⇔ x ∈ y)
R∧elim.

x ∈ x⇔ x ∈ y
L∧elim.

x ∈ x⇒ x ∈ y
⇒elim.

x ∈ y

x = y
∀elim.

(x ∈ y ⇔ y ∈ y) ∧ (y ∈ x⇔ y ∈ y)
L∧elim.

x ∈ y ⇔ y ∈ y
L∧elim

x ∈ y ⇒ y ∈ y
⇒elim.

y ∈ y

(3) Suppose ϕ is of the form ψ1 ∧ ψ2 for propositions ψ1 and ψ2.
Then, we seek to prove [x: y]ϕ: [x: y]ψ1 ∧ [x: y]ψ2. In general, we
have no way of proving [x: y]ϕ. However, let us assume two
inductive hypotheses which state that we have already performed
this proof on our ingredients ψ1 and ψ2. That is, suppose we
know

x = y ψ1
IH1

[x: y]ψ1 and

x = y ψ2
IH2

[x: y]ψ2 .

We can present a proof in terms of these inductive hypotheses.

x = y

ψ1 ∧ ψ2
L∧elim.

ψ1
IH1

[x: y]ϕ1

x = y

ψ1 ∧ ψ2
R∧elim.

ψ2
IH2

[x: y]ψ2 ∧intro.
[x: y]ψ1 ∧ [x: y]ψ2

58 DAVIS DEATON

(4) Suppose ϕ is of the form ψ1 ∨ ψ2 for propositions ψ1 and ψ2.
Then, we seek to prove [x: y]ϕ: [x: y]ψ1 ∨ [x: y]ψ2. This time, we
will assume the inductive hypotheses in a different form:

x = y
IH1

ψ1 ⇒ [x: y]ψ1 and

x = y
IH2

ψ2 ⇒ [x: y]ψ2 .

This is justified by the deduction theorem. Then, we can present
our proof.

ψ1 ∨ ψ2

x = y
IH1

ψ1 ⇒ [x: y]ψ1

x = y
IH2

ψ2 ⇒ [x: y]ψ2 ∨elim.
[x: y]ψ1 ∨ [x: y]ψ2

(5) Suppose ϕ is of the form ψ1 ⇒ ψ2 for propositions ψ1 and ψ2.

Exercise 4.1.3. Mimic the form of the previous two proofs to
come up with inductive hypotheses and a proof that x = y and
ϕ prove [x: y]ϕ in this case.

(6) Suppose ϕ if of the form ∀z. ψ for a proposition ψ and a variable
z. Since we supposed that x and y were not bound in ϕ, z
must be distinct both x and y. Thus, we are seeking to prove
[x: y]ϕ:∀z. [x: y]ψ from ϕ:∀z. ψ. Let w be an unused variable.
As our inductive hypothesis, suppose

x = y ψ
IH

[x: y]ψ .

By the conversion theorem, this is the same as supposing

x = y ψ[z:w]
IH

[z:w, x: y]ψ .

Notice that variable substitutions like [w: z, z:w]ψ:ψ do not
change propositions, but instead are there to match the forms
of our rules and axioms. Now, we can present our proof.

>
>

x = y

∀z. ψ
∀elim.

∀z. [w: z, z:w]ψ ⇒ [z:w]ψ
⇒elim.

[z:w]ψ
IH

[z:w, x: y]ψ
⇒intro.

> ⇒ [z:w, x: y]ψ
∀intro.

> ⇒ ∀z. [w: z, z:w, x: y]ψ
⇒elim.

∀z. [x: y]ψ

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 59

(7) Suppose ϕ if of the form ∃z. ψ for a proposition ψ and a variable
z.

Exercise 4.1.4. Mimic the form of the previous proof to develop
an inductive hypothesis and a proof for this case.

�

Again, I will summarize what this proof accomplished. We wished to
show that for all propositions ϕ,

x = y ϕ
sub.

[x: y]ϕ .

There are seven recipes for a proposition, so we created a proof for
each recipe. For some of these recipes, we did not need an inductive
hypothesis. That is, we did not need to suppose anything about our
ingredients to develop the proof. These were the first two cases. Each
other case required an inductive hypothesis. For example, the proposi-
tion ψ1 ∧ ψ2 has ingredients ψ1 and ψ2. These were each constructed
using a recipe as well, and same with their ingredients. Thus, a proof
of the theorem consists of proofs for some cases which do not involve
inductive hypotheses, and then demonstrations of how to stitch proofs
for ingredients into proofs for recipes. This is what occurred in each of
the other cases. Even if the proof of the substitution theorem seems
elusive, this point should be clear: equality of sets means that the sets
may be substituted for each other in any proposition.

The notion of equality allows us to define another quantifier: the
uniqueness quantifier.

Definition 4.1.7. For a proposition ϕ and a variable x not bound in
ϕ, we define the proposition ∃!x. ϕ, read as “there exists a unique x
such that ϕ,” as

∃!x. ϕ: (∃x. ϕ) ∧ (∀y.∀z. [x: y]ϕ ∧ [x: z]⇒ y = z)

where y and z are distinct unused variables of ϕ. Further, for a propo-
sition ϕ and a nonempty sequence of distinct variables x1, . . . , xn not
bound in ϕ, we define

∃!x1, . . . , xn. ϕ: (∃x1, . . . , xn. ϕ)∧
(∀y1, . . . , yn.∀z1, . . . , zn.

[x1: y1, . . . , xn: yn]ϕ ∧ [x1: z1, . . . , xn: zn]ϕ⇒
y1 = z1 ∧ · · · ∧ yn = zn)

where y1, . . . , yn and z1, . . . , zn are distinct unused variables of ϕ. If n
is 0, ∃!x1, . . . , xn. ϕ should be interpreted as just ϕ.

60 DAVIS DEATON

While this definition may seem complicated, it really is not so bad.
The proposition ∃!x. ϕ is that there exists some x such that ϕ holds,
and for any sets y and z, if [x: y]ϕ and [x: z], then y = z. That is to say,
if there are multiple sets x such that ϕ, then they are equal (and so are
actually the same set). The definition with sequences says that there
exists a sequence x1, . . . , xn such that ϕ, and any pair of sequences
satisfying ϕ are (pairwise) equal.

4.2. Single-Valued Functions. If there is one largest flaw of this
thesis so far, it is that I have not told you how to write down a set. We
can write down propositions and proofs, and we have proven properties
of sets, and even described an axiom of them, but yet, we have not
written down a set. This is because, formally speaking, it is very difficult
to define how to write down a set.

Definition 4.2.1. A single-valued propositional function or just func-
tion for short, is a proposition Φ6 in the free variables x1, . . . , xn, y such
that

∀x1, . . . , xn. ∃!y.Φ.
The variables x1, . . . , xn are called the inputs and the variable y is
called the output. That is, a proposition is a function when for any
choice of inputs, there is exactly one choice of output satisfying the
proposition. In other words, a function is some sort of process or
algorithm, determined by a proposition, which transforms every input
into some output. If Φ is a function with inputs x1, . . . , xn and an
output y, we write

Φ:x1, . . . , xn 7→ y,

read as “Φ maps x1, . . . , xn to y.” Importantly, this use of the : is
not meaning “defined to be.” Instead, this stands for the proposition
that defines a function. A function with no inputs, so a proposition Φ
such that ∃!y.Φ is called a propositional set or simply a constant. Such
propositions choose a unique set from our domain of discourse. We will
revisit the definition of a function soon.

Propositional sets are, of course, not sets; they are propositions. But,
propositional sets allow us to use the syntax of propositions to represent
unique sets. This is very powerful. Unfortunately, we still can’t actually
create an example of a propositional set. Regardless, we will do it
anyway.

6Φ is uppercase ϕ. We will use this as well as Ψ (uppercase ψ) for propositional
functions.

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 61

Theorem 4.2.2. The empty set theorem states that

∃a.∀b. a /∈ b.

Intuitively, this states that there exists a set with no elements. We
are not yet able to prove this theorem, so we will just accept it for now.
Since two such sets a would have the same elements (that is, would
both have no elements), the axiom of extensionality yields that this set
is unique. This unique set is a special constant.

Definition 4.2.3. The empty set, denoted by ∅, is defined to be the
constant

∅:∀y. y /∈ x
where x and y are variables chosen based on context.

By the empty set theorem, this is a propositional set. The importance
of this definition is that the empty set, ∅, is the set with no elements.

Of course, how we have defined it, ∅ is actually a proposition, but
there is a unique set which makes it true, a unique “solution” so to
speak. Constants such as this, as well as functions, are not useful until
we can use them like actual sets.

Definition 4.2.4. Suppose ϕ and ψ are propositions and x is a variable.
Then, the propositional variable assignment [x:ψ]ϕ is shorthand for

[x:ψ]ϕ:∀x. (ψ ⇒ ϕ).

This is only defined when the right side is a proposition. It is sufficient
to assume that no free variable of ϕ is bound in ψ and vice versa and
that x is not bound in ψ or ϕ. This definition technically makes sense
for all propositions, but it is most meaningful when ψ is a function.

For example, let ϕ denote the proposition ∃b. b ∈ a. This is a
proposition representing that a has an element (that it is not empty).
Then, the proposition [a: ∅]ϕ should be a proposition representing that
the empty set has an element (which it does not, by nature of being
empty). This proposition can be fully expressed as

∀a. (∀b. b /∈ a⇒ ∃b. b ∈ a).

We can interpret this as “for every set a which is the empty set, a has
an element.” Notice that the variables a and b before the ⇒, matching
the definition of ∅, are chosen based on context. Indeed, if ∅ is replacing
a variable x, this is the correct choice of x in the definition of ∅, and y
should be some other bound or unused variable.

62 DAVIS DEATON

We are also allowed to “evaluate” these assignments when they are
for syntactic sets. For example,

∃b. b ∈ ∅
is a perfectly valid way of writing the previous proposition. In this case,
an arbitrary unused variable is chosen for x, like a. Using the rules for
quantifiers, it is not difficult to prove that this statement is false.

As another example, let us consider a constant Φ in the free variable
a and the proposition [b: [a: b]Φ, c: [a: c]Φ](b = c) (which represents
something like Φ = Φ). Notice that we must replace the free variable of
Φ for b and c so that this propositional variable assignment quantifies
over the correct variables. This is the proposition

∀b. ([a: b]Φ⇒ (∀c. ([a: c]Φ⇒ b = c)).

We can pull the quantifiers to the front to find that this is equivalent
to the proposition

∀b.∀c. ([a: b]Φ⇒ [a: c]Φ⇒ b = c)

which is equivalent to

∀b.∀c. ([a: b]Φ ∧ [a: c]Φ⇒ a = b).

Since Φ is a constant, we know that ∃!a.Φ. Recall the definition of
the uniqueness quantifier, and compare it to the last proposition we
wrote. This is the latter half of the ∧ in the definition of ∃!, thus, this
proposition is true. Therefore, for a constant Φ, Φ = Φ, which is as we
would expect. Most of the time, our constants will be defined in terms
of arbitrary variables like ∅ was. Thus, we can often write expressions
closer to [b: ∅, c: ∅](b ∈ c).

Next, consider the proposition a = ∅, which could be expanded as
∀b. (∀c. c /∈ b ⇒ a = b). Using extensionality, this is equivalent to
∀c. c /∈ a, or in other words that a is empty. In general, if Φ is a
constant in the variable x, then y = Φ is equivalent to [x: y]Φ.

It is reasonable to ask whether every set is a propositional set. In
other words, for an actual set v, is it possible to find a constant Φ such
that [x: v]Φ is true, which is that Φ represents the set v? The answer is
generally considered to be “no”, but technically speaking, it is up to
you.

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 63

Finally, we consider a way to combine functions.

Theorem 4.2.5. Suppose Φ is a function with inputs x1, . . . , xn and
output y and Ψ is a function with inputs y, y1, . . . , ym and output z and
that no free variable of Φ is bound in Ψ and vice versa. Then, [y: Φ]Ψ
is a function with inputs x1, . . . , xn, y1, . . . , ym and output z.

Proof. The proposition [y: Φ]Ψ may be expanded as

∀y. (Φ⇒ Ψ).

We seek to show that this is a function, which is that

∀x1, . . . , xn, y1, . . . , ym.∃!z.∀y. (Φ⇒ Ψ).

We know that ∀y1, . . . , yn.∀y.∃!z.Ψ and that ∀x1, . . . , xn. ∃!y.Φ.
Consider any choice of inputs x1, . . . , xn, y1, . . . , ym. Then, we have a

unique set y satisfying Φ. Thus, pick the unique set z satisfying Ψ with
this value of y. This set z satisfies ∀y. (Φ⇒ Ψ) because whenever Φ is
true (that is, whenever y is the value we selected), Ψ is true (since we
picked z based on our value of y). This is also the only z we could have
chosen or else we would have two z’s satisfying Ψ for our particular
value of y. Thus, [y: Φ]Ψ is a function. �

4.3. Pairs and Unions. Now that we have an example of a (proposi-
tional) set, ∅, and we know how to write down certain sets in terms of
propositions, we might seek methods to find other sets. For example,
we might expect there to be a set containing the empty set, and we
might expect there to be a set containing the empty set and the set
containing the empty set. We will provide these to create these sets
and others through additional axioms of set theory.

The first such axiom is arguably the most obvious axiom of set theory.

Axiom 4.2. The axiom of pairing states that

pair.
∀a, b.∃c. a ∈ c ∧ b ∈ c .

This axiom states that for every pair of sets, there is a set containing
both of them. That is, we may take two sets and find another set
containing both of them. Metaphorically, if we have two bags, we can
put them both into a larger bag. Using the axiom of extensionality, we
can convert this into the following form:

∀a, b.∃c.∀d. (d = a ∨ d = b⇒ d ∈ c).
That is, for all sets a and b, there is a set c such that if any set d is
equal to a or b, then d is in c. Intuitively, this is the same thing.

64 DAVIS DEATON

Unfortunately, this axiom alone is not enough to create a set whose
elements are exactly a and b. That is, the set c may contain extra
elements. In other words, we are unable to specify that we want c to
contain only a and b. This is remedied by the next axiom.

Axiom 4.3. The axiom of specification states that for each sequence of
distinct variables x, y, z, w1, . . . , wn and every proposition ϕ such that
each of the free variables and none of the bound variables of ϕ are in
the sequence x, z, w1, . . . , wn and such that y is unused in ϕ,

∀w1, . . . , wn.∀z. ∃y.∀x. (x ∈ y ⇔ x ∈ z ∧ ϕ)

This axiom states that for each set z, we can form a set y whose
elements x are exactly those elements x of z for which the proposition
ϕ holds. In other words, if we have a set z, we can specify that we only
which to talk about the elements x which satisfy a proposition ϕ.

We can take the axiom of pairing and the axiom of specification and
combine them to create a set whose elements are exactly the sets a and
b. In particular, let ϕ be the proposition d = a∨d = b and let c be a set
such that d = a∨ d = b⇒ d ∈ c as given by the axiom of pairing. If we
take this set c to be the z in the axiom of specification, we get a set e
such that d ∈ e⇔ d ∈ c∧(d = a∨d = b). Since (d = a∨d = b)⇒ d ∈ c,
the proposition d ∈ c ∧ (d = a ∨ d = b) is equivalent to d = a ∨ d = b.
Thus, e is a set such that d ∈ e⇔ d = a ∨ d = b. Such a set e must be
unique (because we know its elements).

This leads us to the following definition.

Definition 4.3.1. For variables x and y, define the function {x, y},
read as “the set containing x and y,” as

∀w. (w ∈ z ⇔ w = x ∨ w = y)

where the variables z and w are chosen from context. The inputs are x
and y, and the output is z. For a single variable x, define the function
{x}, read as “the set containing x,” as

∀w. (w ∈ z ⇔ w = x)

where z and w are again chosen from context. The input is x and the
output is z.

Because w = x ∨ w = x is equivalent to w = x, {x} and {x, x} are
equivalent propositions for all variables x. Using the axioms of pairing
and specification, we know that

∀a, b.∃!c.∀d. (d ∈ c⇔ d = a ∨ d = b).

That is, {a, b} is a function with inputs a and b.

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 65

Due to our notation for replacement, it makes perfect sense to write
[a: ∅]{a} or simply {∅}, which is a proposition in some free variable (say,
x) determining if that variable’s only element if the empty set, or in
other words if it is the set {∅}. That is, {∅} is a constant, and more
generally {Φ} is a constant for every constant Φ. Even better, {Φ,Ψ}
is function for all functions Φ and Ψ, and its inputs are the inputs of Φ
and Ψ. In particular, {∅, {∅}} is a constant, as is {∅, {∅, {∅}}}.

We are now well on our way to creating very large sets. Unfortunately,
we don’t yet have a way to create a set with three or more elements.
For this, we need another axiom.

Axiom 4.4. The axiom of union states that ⋃
∀a.∃b.∀c, d. (c ∈ d ∧ d ∈ x⇒ c ∈ b) .

Intuitively, this axioms states that for every set a (whose elements are
also sets), there is a set b containing every element c of every element
d of a. This set b, in a sense, joins all the elements of x, hence the
term union. Metaphorically, this means that we can take a bag of bags
and dump all the smaller bags into one single bag. Using the axiom of
specification, we can create a syntactic set whose elements are exactly
those elements c of elements d of x.

This provides a convenient definition.

Definition 4.3.2. For a variable x, define the function x
⋃

, read as “x
unioned” or x’s union by

x
⋃

: ∀z. z ∈ w ⇔ (∃y. z ∈ y ∧ y ∈ x)

where the variables y, z, w are chosen based on context. The input is x
and the output is w. For variables x and y, we also define the special
shorthand x ∪ y as

x ∪ y: {x, y}
⋃

.

Just like with ordered pairs, x
⋃

becomes a constant (or function)
when x is replaced by a constant (or function). For example, we can
take

{{∅, {∅}}, {{{∅}}}}
⋃

.

This set is difficult to read, but it is the pairing of {∅, {∅}} and {{{∅}}}
unioned. Consequently we could also write this set as

{∅, {∅}} ∪ {{{∅}}}.
This set has exactly three elements: ∅, {∅}, and {{∅}}. Thus, we have
created a set with three elements.

We can create sets with as many elements as we want.

66 DAVIS DEATON

Definition 4.3.3. For a sequence of variables x1, . . . , xn define the
function {x1, . . . , xn}, read as “the set containing x1, x2, . . . , and xn,”
as

{x1, . . . , xn}:∀z. z ∈ y ⇔ (z = x1 ∨ z = x2 ∨ · · · ∨ z = xn)

where the variables y and z are chosen from context. The inputs
are x1, . . . , xn and the output is y. In the special case of n = 0, the
proposition z = x1∨· · ·∨z = xn should be interpreted as the proposition
⊥.

Theorem 4.3.4. For a sequence of variables x1, . . . , xn and variables
y and z not appearing in the list,

∀x1, . . . , xn. ∃!y.∀z. (z ∈ y ⇔ z = x1 ∨ · · · ∨ z = xn).

In other words, the proposition {x1, . . . , xn} is a function with inputs
x1, . . . , xn and output z.

Proof. Here, we will see another (informal) proof by induction, although
a much simpler one. In this proof, we will perform induction over the
length of the list of variables.

The case where n is zero has already been proven in our discussion
of the empty set, and the cases where n is 1 or 2 have been proven in
our discussion of pairing.

Recall our initial discussion of the natural numbers. We noted that
every natural number is either 0 or is the successor of a natural number.
This is an inductive construction, just like propositions are, except it
only has two recipes. We have already provided a proof for the first
recipe. The second recipe takes a single ingredient, a natural number,
and produces its successor.

Thus, here is our key argument: Suppose that

∀x1, . . . , xn−1.∃!y. {x1, . . . , xn−1}
which is that {x1, . . . , xn} is a function. Then, apply our pairing
argument to create the function

{{x1, . . . , xn−1}, {xn}}.
Thus,

{{x1, . . . , xn−1}, {xn}}
⋃

is function, and this is the set whose elements are exactly x1, . . . , xn, so
therefore {x1, . . . , xn} is a function, which is the desired result. �

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 67

Exercise 4.3.1. Even with the very limited number of ways we can
build sets, we now have many redundant ways of writing the same
syntactic sets. Prove or otherwise convince yourself of the following
equations for variables x and y:

(1) ∅ = {} (using the definition of {x1, . . . , xn} when n = 0)
(2) {x, y} = {y, x} (thus, the order of the elements in a set is

irrelevant)
(3) {x, y, y} = {x, y} (thus, repetition of elements in a set is irrele-

vant)
(4) {{x}}

⋃
= x

(5) x ∪ y = y ∪ x

4.4. Subsets and Set Builder Notation. Recall a particular pattern
of the last subsection: An axiom guaranteed the existence of some
larger set containing elements we wanted, but we wanted a smaller set
containing exactly those elements. We constructed these smaller sets
using the axiom of specification. In particular, we were constructing
subsets.

Definition 4.4.1. For variables x and y, define the proposition x ⊆ y,
read as “x is a subset of y,” as

x ⊆ y:∀z. (z ∈ x⇒ z ∈ y)

where z is some other variable. If x ⊆ y, we say that x is a subset of y.

Intuitively, this definition says that a set x is a subset of a set y if
every element z of x is also an element z of y. If we have a set x, it may
be useful to study certain subsets of x, in particular those which satisfy
some proposition. For example, if x is the set of natural numbers and
ϕ is a proposition representing “is even,” then we might wish to use x
and ϕ to create the set of even natural numbers.

We can achieve this with new notation for the axiom of specification.

Definition 4.4.2. For a proposition ϕ and variables x and y not bound
in ϕ, define the function {x ∈ y | ϕ}, read as “the set of all x in y such
that ϕ,” as

{x ∈ y | ϕ}:∀x. (x ∈ z ⇔ x ∈ y ∧ ϕ)

where z is a variable chosen from context. The inputs are y and the
free variables of ϕ excluding x, and the output is z. This is call set
builder notation.

This proposition represents that z is exactly the set of all elements
x in y such that the proposition ϕ holds. These sets are guaranteed
to exist by the axiom of specification. That is, this proposition is a

68 DAVIS DEATON

function representing the special subset of y whose elements all satisfy
ϕ. Like before, due to our replacement syntax, we can replace any of
these variables, or the proposition ϕ, with particular examples.

Set builder notation has a variety of nice properties. For example,

{x ∈ y | ϕ} ⊆ y,

which says that the set of all the elements of y which satisfy ϕ is a
subset of y. Further,

∀x. (ϕ⇒ ψ)⇒ {x ∈ y | ϕ} ⊆ {x ∈ y | ψ},
which says that if ϕ⇒ ψ, that is if every x satisfying ϕ also satisfies ψ,
then the relevant subsets of y have the corresponding subset relationship.

Example 4.4.3. Let us explore this notation with some examples.

(1) {x ∈ ∅ | ϕ} = ∅ for any proposition ϕ.
(2) ∀y. {x ∈ y | ⊥} = ∅.
(3) ∀y. {x ∈ y | >} = y.
(4) {x ∈ {∅} | x = ∅} = {∅}.
(5) {x ∈ y | x ∈ y} = y.
(6) {x ∈ {∅, {∅}, {∅, {∅}}} | ∅ ∈ x} = {{∅}, {∅, {∅}}}. Here, the

value of x is allowed to range over the values, ∅, {∅}, and {∅, {∅}},
and we select only those sets x which contain the empty set.

The axiom of specification allows for creating a construction similar
to that of unions.

Definition 4.4.4. For a set x, define the proposition x
⋂

, read as “x’s
intersection,” as

x
⋂

:∀y. (y ∈ z ⇔ ∀w.(w ∈ x⇒ y ∈ w)),

where the variables y, z, and w are chosen from context. Although
this is not a function, one should think of x as the input and z as the
output. For two variables x and y, we define the function x ∩ y, read
as “x intersect y,” as

x ∩ y: {x, y}
⋂

.

This is actually a function with inputs x and y and output z.

The proposition x
⋂

is that y is a set whose elements are exactly
those sets z which are elements of every element w of x. Suppose a is a
non-empty set and b is an element of a. Then, the axiom of specification
guarantees that a

⋂
is a unique set because

a
⋂

= {c ∈ b | ∀d. (d ∈ x⇒ c ∈ d)}.

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 69

However, if a is empty, we cannot use set builder notation in this way,
because we have no choice for the element b. This is the only obstruction
to x

⋂
being a function. That is,

∀x. x = ∅ ∨ ∃!y. x
⋂

.

We might wonder if ∅
⋂

truly does not exist, or if it exists but is just
not guaranteed by the axiom of specification. In fact, it truly does not
exist.

Theorem 4.4.5. There is no set ∅
⋂

. That is,

(∃x. (y ∈ x⇔ ∀z.(z ∈ ∅ ⇒ z ∈ y)))¬.

Proof. Let us consider what the constant ∅
⋂

would be. It would be
the set of all sets who are elements of every element of the empty set.
This is the set of all sets because every set is an element of the (no)
elements of the empty set. This is the same reasoning as why ⊥ ⇒ ϕ
for any proposition ϕ.

But, this set of all sets cannot exist. Let us suppose that ∅
⋂

is
a propositional set (namely, let us assume it exists). Let Φ be the
(propositional) set {a ∈ ∅

⋂
| a /∈ a}. This is guaranteed to exist by the

axiom of specification. Intuitively, this is the set of all sets a which are
not elements of themselves.

Let us suppose that Φ ∈ Φ. By the definition, this means that Φ
satisfies the proposition we used for specification, which is to say that
[a: Φ](a /∈ a) or simply Φ /∈ Φ holds.

But, let us suppose that Φ /∈ Φ holds. It still must be that Φ ∈ ∅
⋂

,
so we must have that Φ does not satisfy our predicate of specification,
which is to say that [a: Φ](a /∈ a)¬ or simply (Φ /∈ Φ)¬.

In both of these cases, we assumed something and concluded the
opposite. This is reveals that we have reached a contradiction, and thus
∅
⋂

does not exist.
This is the famous Russel’s paradox, which forbids the existence of

a set of all sets. This is also essentially the same argument as the
barber’s paradox. Consider a village with a barber who shaves everyone
who does not shave themself. Does this barber shave himself or not?
In mathematics, we would like to forbid questions which cannot have
answers, such as this one. Thus, we declare that this village, and the
set of all sets, are invalid (or just not sets). Some people interpret this
as that the set of all sets is “too big” to be a set. �

70 DAVIS DEATON

Example 4.4.6. Let us look at some of the properties of
⋂

now that
we have considered some of its abstract behavior. For variables x and
y, these propositions are true.

(1) x ∩ x = x.
(2) x ∩ y = y ∩ x.
(3) x ∩ y ⊆ x.
(4) x ⊆ y ⇒ (x ∩ y = x).
(5) ∀y. (y ∈ x⇒ x

⋂
⊆ y).

Example 4.4.7. We can also perform some calculations using
⋂

.

(1) {∅, {∅}}
⋂

= ∅ because ∅ is in the set on the left and it has no
elements.

(2) {{∅}, {∅, {∅}}}
⋂

= {∅} since ∅ is the only element of both sets
in the set on the left.

Although we have managed to describe many properties of and about
subsets, there is also a simple axiom related to subsets.

Axiom 4.5. The axiom of power set states that

pwr.
∀a.∃b.∀c. (c ⊆ a⇒ c ∈ b) .

Intuitively, this states that for every set a, there is a set b which
contains every subset c of a. Like before, we can use the axiom of
specification to create a set whose elements are exactly the subsets of a.

Definition 4.4.8. For a variable x, define the function xP, read as
“x’s power set” or just “xP,” as

xP :∀y. (y ∈ z ⇔ y ⊆ x)

where the variables y and z are chosen from context. The input is x
and the output is z.

The axioms of power set and specification mean that this is actually
a function. Intuitively, the set aP is the set whose elements are the
subsets of a.

Every element of the empty set (of which there are none) is an element
of every other set. Thus, ∀a. ∅ ⊆ a. As a consequence, ∀a. ∅ ∈ aP.
Thus, we know that the power set of any set has an element, and thus
is not the empty-set. Further, ∀a, b. (a ∈ b⇒ {a} ∈ bP).

Combining the power set with other operations on sets can make
complicated statements. For example, aP

⋃
= a and aP

⋂
= ∅, which

are relatively simple.

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 71

4.5. Infinity and Induction. We have now defined enough material
to introduce our first set. Recall that we have not proved the empty
set theorem, so we do not technically know that there even is a set. We
will resolve this with the next axiom.

First, we must define a new function.

Definition 4.5.1. For a variable x, define a function xS, read as “x’s
successor” or just “xS,” as

xS:x ∪ {x}.

We will use this to turn the natural numbers into sets, and then
create a set of these natural numbers.

We will encode the number 0 as ∅. That is, although 0 is a number,
which is not traditionally a set, we will pick that the set ∅ refers to the
number 0. This is perhaps the most obvious choice for how to encode 0
as a set; 0 is nothingness and ∅ is the nothingness set. Then consider
the set 0S which is 0∪ {0}. This is the set which we want to call 1, the
successor of 0. This yields the equation 1 = {0}, which has one element.
Then, we can consider the set 0SS also known as 1S also known as 2.
This is the set, 1∪{1} which is the set {0}∪ {1} which is the set {0, 1}.
Take a stab at what 0SSS aka 3 is. Spoiler: it’s {0, 1, 2}.

We would like to collect all of these elements into a set.

Axiom 4.6. The axiom of infinity states that

infty.
∃a. (∃b. (b ∈ a ∧ ∀c. c /∈ b)) ∧ (∀b. (b ∈ a⇒ bS ∈ a)) .

This axiom says that there exists a set a such that there is an element
b in a that is the empty set and for every element b of a, the successor
of b is also an element of a. This is called the axiom of infinity because
it asserts the existence of an infinite set, although it is a particularly
special infinite set.

This provides us with many useful properties. For example, let us
now prove the empty set theorem.

Proof. Consider the set a guaranteed by the axiom of infinity and form
the set {b ∈ a | ⊥}. This set has no elements, and so this set is the
empty set. Therefore, the empty set exists. �

Now that we have proven this result, all of the other sets we built
using the empty set are also valid sets.

The set a guaranteed by the axiom of infinity contains all of the
natural numbers, but it might contain some additional values. We
would like to remove those other elements from the set a using the
axiom of specification. This is more difficult than the previous uses of

72 DAVIS DEATON

the axiom of specification, but it is possible nonetheless. First, let us
define some shorthand.

Definition 4.5.2. For a variable x, let xI, read as “x is inductive” or
just “xI,” be the proposition

∅ ∈ x ∧ ∀y. (y ∈ x⇒ yS ∈ x)

where y is some other variable.

With this notation, the axiom of infinity is that

∃a. aI.
This proposition aI is intended to mean that the set a contains each of
the natural numbers.

Intuitively, the natural numbers are exactly those elements which are
contained in every set containing the natural numbers, that is in every
inductive set. Thus, we create the following definition.

Definition 4.5.3. Define the proposition N, read as “the set of natural
numbers,” “the natural numbers,” or just “N,” by

N:n ∈ x⇔ ∀y. (yI ⇒ n ∈ y)

where the variables x and y are chosen based on context.

We would like this to be a constant in the free variable x. That is,
we would like this to serve as a definition of the set of natural numbers.

Theorem 4.5.4. N is a constant.

Proof. That is, we want to find a set satisfying the definition of the
natural numbers as described above, or equivalently we would like to
find a set b whose elements are exactly those elements n of every set c
such that cI (such that c contains all the natural numbers). To see that
this set exists, we can take the set a guaranteed by the axiom of infinity
and create the set {n ∈ a | ∀c. (cI ⇒ n ∈ c)}. The elements of this set
are the elements n of a such that ∀c. (cI ⇒ n ∈ c). But, since a satisfies
aI, any set n such that ∀c. (cI ⇒ n ∈ c) is also an element of a. Thus,
these elements are exactly those sets n such that ∀c. (cI ⇒ n ∈ c). Any
two sets with this property would necessarily have the same elements,
and thus this set is unique. Thus, N is a propositional set. �

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 73

Now that we have the set of natural numbers, we can present the
most important proof about this set.

Theorem 4.5.5.

n ∈ N⇔ n = 0 ∨ ∃m.m ∈ N ∧ n = mS.

That is, n is a natural number if and only if it is 0 or is the successor
of a natural number.

Proof. We will break this proof into two pieces. First we will suppose
that n = 0 ∨ ∃m. (m ∈ N ∧ n = mS) and show that n ∈ N. Since
cI requires that 0 ∈ c, 0 is in every set c such that cI, and therefore
0 ∈ N. Thus, if n = 0, n ∈ N. If n = mS for some m ∈ N, then
m must be in every set c such that cI. From the definition of cI, if
m ∈ c, then mS ∈ c and thus n ∈ c. Thus, n is in every set c such
that cI. Thus, n ∈ N. This completes the first part of the proof: if
n = 0 ∨ ∃m.m ∈ N ∧ n = mS, then n ∈ N.

Next, we suppose that n ∈ N and show that n = 0 ∨ ∃m.m ∈
N ∧ n = mS. This direction is more difficult. Suppose that n ∈ N
but not n = 0 ∨ ∃m.m ∈ N ∧ n = mS. In particular, we suppose that
n is not 0 and that n is not the successor of any m ∈ N. Choose a
particular set c such that cI and that there is not any set m ∈ c such
that n = mS. This is guaranteed to exist because we know not all sets
c such that cI contain m (or else m would be in N). Then, form the set
{m ∈ c | m 6= n}. That is, form a set that is c with n removed. It is
still that {m ∈ c | m 6= n}I because the element we removed is neither
0 nor mS for some m ∈ c. Therefore, we have found a set c satisfying
cI which does not contain n. Thus not all such sets contain n, and
thus n /∈ N. This contradicts our assumption that n ∈ N. Therefore,
our later supposition that not n = 0 ∨ ∃m.m ∈ N ∧ n = mS must have
been a contradiction. Consequently, it must be the case that for every
n ∈ N, n = 0 ∨ ∃m.m ∈ n ∧ n = mS. This completes the proof. �

This confirms our earlier intuition of the natural numbers as an
inductive construction. A natural number can be constructed by two
recipes: 0 and S. A consequence is the following theorem.

74 DAVIS DEATON

Theorem 4.5.6. The induction principle of the natural numbers states
that for any proposition ϕ in a free variable x and an unused variable
n,

[x: 0]ϕ ∀n. (n ∈ N ∧ ϕ[x:n]ϕ⇒ [x:nS]ϕ)
Nind.

∀n. (n ∈ N⇒ [x:n]ϕ) .

That is, in order to prove a proposition ϕ for all natural numbers,
it suffices to prove ϕ holds for 0 and that if some natural number n
satisfies ϕ, then nS does too.

Let us restate this theorem intuitively. Suppose that ϕ is true of 0
and that if ϕ is true of n, then it is true of nS. Then, since ϕ is true of
0, it is true of 1. Then, since ϕ is true of 1, it is true of 2. Then, since
ϕ is true of 2, it is true of 3. Since this argument could be repeated
without stopping, ϕ must be true of all natural numbers. However, this
is not a proof; asserting that we can repeat this argument forever to
prove all natural numbers is just asserting that induction works on the
natural numbers. Unfortunately, we cannot assert our claim in order to
prove it. Instead, we present the following proof.

Proof. Suppose ϕ is a proposition such that

[x: 0]ϕ and ∀n. (n ∈ N ∧ [x:n]ϕ⇒ [x:nS]ϕ).

Consider the set {x ∈ N | ϕ}. We will show that {x ∈ N | ϕ} is an
inductive set. Since 0 ∈ N and [x: 0]ϕ, we know that 0 ∈ {x ∈ N | ϕ}.
Further, suppose that n ∈ {x ∈ N | ϕ} which is to say that n ∈ N
and [x:n]ϕ. By our assumption, [x:nS]ϕ, and thus nS ∈ {x ∈ N | ϕ}.
Consequently, we have shown that {x ∈ N | ϕ} is an inductive set.
Therefore, this set contains every natural number, so N ⊆ {x ∈ N | ϕ}.
By the definition of set builder notation, it is also that {x ∈ N | ϕ} ⊆ N
and thus that these sets are equal. In particular, every natural number
satisfies ϕ, meaning that ∀n. [x:n]ϕ. This completes the proof. �

In essence, the natural number induction principle is a form of infinite
argumentation. We are able to make such an infinite argument because
the axiom of infinity gives us access to an infinite set. From this single
induction principle, we are able to prove induction principles for the
elements of many other sets. However, we cannot use the natural
number induction principle to create an induction principle that works
for sets themselves because, as we have shown, there is no set of all sets.
However, mathematicians, in particular constructive mathematicians,
have such success working with induction principles that we assert an
induction principle for sets.

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 75

Axiom 4.7. The axiom of set induction states that for every proposition
ϕ, z a free variable of ϕ, and variables x and y unused in ϕ,

∈ind.
∀x. (∀y. (y ∈ x⇒ [z: y]ϕ)⇒ [z:x]ϕ)⇒ ∀z. ϕ .

We can restate this as
∀x. (∀y. (y ∈ x⇒ [z: y]ϕ)⇒ [z:x]ϕ)

∈ind.
∀z. ϕ .

That is, if a proposition being true of all elements y of a set x implies
that the proposition is true of x, then the proposition is true of all sets.

Traditionally, this axiom is replaced with the axiom of foundation or
the axiom of regularity, which are both equivalent to set induction, but
given that this thesis is about induction, I have chosen this formulation.

Let us compare this axiom to the natural number induction principle.
The first difference is that the natural number induction principle has
two assumptions while the set induction principle has only one. This
is because the natural number induction principle treats the smallest
natural number, 0, separately. The set induction principle does not
need to do this. This is because, supposing the assumption of the set
induction principle of some proposition ϕ, ∀y.(y ∈ ∅ ⇒ [z: y]ϕ) since ϕ
holds of each of the (no) elements of the empty set (that is, F ⇒ ϕ is
true), so therefore [z: ∅]ϕ which is that ϕ holds of the empty set, the
smallest set.

The next difference is that the “ingredients” of a set x are its elements
y, rather than the ingredients of the natural number n being the m such
that n = mS or nothing if n = 0. Intuitively, this seems right, as a set
consists entirely and only of its elements. Thus, we are asserting that all
sets are “built” from elements which are built from their elements, and
so on, until the empty set is reached. That is, all of our sets are built
from the empty set and the methods we have for building sets and thus
cannot be “too big” like the set of all sets would be. Of course, they
are still allowed to be quite big, like power set of the natural numbers.

We could state the natural number induction principle in the same
way by creating an “ingredients” function which sends a natural number
to a set of ingredients: the empty set in the case of 0 and the set n in
the case of nS. Then, the natural number induction principle as that
if ϕ’s truth for the ingredients of n guarantees ϕ’s truth for n, then ϕ
holds for all natural numbers. We prefer the stated formulation of the
natural number induction principle because it is easier to write down.

76 DAVIS DEATON

Let us use set induction to prove a simple theorem.

Theorem 4.5.7.
∀a. a /∈ a.

That is, no set is an element of itself.

Proof. Consider some set b such that b ∈ b. Then, there is some set c ∈ b
such that c ∈ c (in particular, the set c is the set b). Therefore, suppose
that no element c in b is an element of itself. Then, it must be that b is not
an element of itself either. That is, ∀b. (∀c. (c ∈ b⇒ c /∈ c))⇒ b /∈ b).
Therefore, by the set induction principle, ∀a. a /∈ a. �

This is, in a sense, the second part of the resolution to Russel’s
paradox; it says that it is just true that a /∈ a, so we cannot create the
set of all a such that a /∈ a, as this would be the set of all sets, which
would be an element of the set of all sets (since it would be a set), which
would be a contradiction, since the set of all sets cannot contain itself.

It is still possible to do most of mathematics without the axiom of set
induction. For example, it is still possible to develop most of calculus.
However, mathematicians keep it around to prove some of the more
“exotic” properties of sets. For our purposes, this will be the least-used
axiom, even though this thesis is about induction. For almost all cases,
natural number induction is enough.

4.6. Pairs and Small Propositions. Now that we have briefly delved
into the realm of the infinite, we can return to some simple constructions
regarding sets.

Earlier, we were able to construct a pair {a, b}. This has the property
that {a, b} = {b, a}. Thus, this sort of pair is unordered. It is also
reasonable to desire a set representing the ordered pair of a and b.
Further, we had unordered triples {a, b, c} and we could also make
quadruples, and so on. We wish to do the same thing for ordered
collections.

Definition 4.6.1. For variables x1, . . . , xn, define (x1, x2, . . . , xn), read
as “the sequence x1, . . . , xn” or just “x1, . . . , xn,” by

(): ∅ and (x1, . . . , xn): {{x1}, {x1, (x2, . . . , xn)}}.
A set of the form (x1, . . . , xn) is called a sequence of length n or an
n-tuple. The value xi is called the i-th component of (x1, . . . , xn).

This definition is somewhat hard to unpack, so let’s go through it.
First, () = ∅. Then, (x) = {{x}, {x, ()}}. In particular, (∅) = {{∅}}.
Then, (x, y) = {{x}, {x, (y)}}. In particular, (∅, ∅) = {{∅}, {∅, {{∅}}}}.
For a last example, (x, y, z) = {{x}, {x, (y, z)}}.

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 77

If we have some set x which we know to be a sequence, it is important
to be able to access the sets that appear in the sequence. We do this
with a variety of functions.

Definition 4.6.2. For a variable x, define the proposition xH, read as
“x’s head,” “x head,” or just “xH”, by

xH:x
⋂⋃

.

and define the proposition xT , read as “x’s tail,” “x tail,” or just “xT,”
by

xT :
{
y ∈ x

⋃ ∣∣∣ x⋃ 6= x
⋂
⇒ y /∈ x

⋂}⋃
where y is some other variable.

Suppose that x = {{h}, {h, t}}. This looks like the definition of
(x1, . . . , xn) with x1 replaced by h and (x2, . . . , xn) replaced by t. These
names are intentional: the variable h is supposed to represent the “head”
of the sequence, that is to say the first component, and the variable t is
supposed to represent the “tail” of the sequence, that is to say the rest
of the sequence.

Let us consider the set xH. First, x
⋂

is the intersection of all the
sets in h, which is {h} since h is the only element shared between {h}
and {h, t}. Then, {h}

⋃
is just all the elements of h, that is, h. So

xH = x
⋂⋃

= h. This is good news. It means that the head of a
sequence is actually the first component. If instead x were the empty
sequence, then ∅H would not exist (since ∅

⋂
does not exist). Thus,

the empty sequence has no first component, as is expected.
Let us then consider the set xT This set is substantially more com-

plicated. xT is a subset of x
⋃

= {h, t}. In order to find the tail,
t, we would want to remove the element h. However, if h = t, then
removing the element h would also remove the element t. Thus, we
wish to remove h whenever it is not t. Recall that x

⋂
= {h}. This is

equal to {h, t} whenever h = t and is not equal to {h, t} whenever h 6= t.
Thus, if x

⋃
= x

⋂
, we need to remove the element h, which is the

unique element of x
⋂

. Thus, we take the set of all y ∈ x
⋃

such that
if x

⋃
6= x

⋂
, then y /∈ x

⋂
. This is the definition of xT . In particular,

we have that xT = t, which is the desired behavior. In the case of the
empty set, ∅T = ∅. Perhaps we should expect that the empty sequence
has no tail, but the empty sequence having an empty tail is at least
acceptable.

The sets {{h1}, {h1, t1}} and {{h2}, {h2, t2}} are equal if and only if
h1 = h2 and t1 = t2. As an extension, two sequences x = (x1, . . . , xn)
and y = (y1, . . . , ym) are equal if and only if they are the same length

78 DAVIS DEATON

(so m = n), xH = yH, and xT = yT . In particular, this means that
they are equal if and only if xi = yi for each i.

Further, a set x is a sequence whenever x is empty or xT is a sequence
and x = {{xH}, {xH, xT}}. Although it is nice to have a method to
get the head and tail of a sequence, it is just as important to be able
to get at arbitrary values in a sequence. Thus, we create the following
definition.

Definition 4.6.3. For a variable x, define the projection functions
xπn,7 read as “the n-th projection of x,” by

xπ1:xH, xπ2:xTH, xπ3:xTTH, etc..

That is, π2 is the head of the tail, and π3 is the head of the tail of
the tail, and so on. In particular, (x1, . . . , xn)πi = xi, and so we can
access the elements of our sequence using the πi functions.

Although the language of sequences may seem inconsequential, it
is actually extremely important in set theory. x = ∅ is a proposition.
For any set y, the axiom of specification allows us to create the set
{x ∈ y | x = ∅}, that is the set of all element of y such that x = ∅.
However, we also know that there is a set of all empty sets: {∅}. On
the other hand, we know that x /∈ x is a proposition, and the axiom
of specification allows us to form the set {x ∈ y | x /∈ x} (which is just
y by the axiom of regularity), but we cannot form the set of all sets
which do not contain themselves.

Thus, there is a difference between the propositions x = ∅ and x /∈ x:
we can create a set of all solutions to the former, but the solutions to
the latter are so “large” as to not constitute a set. With this in mind,
we create the following extension to set builder notation.

Definition 4.6.4. For a proposition ϕ and a variable x, define the
proposition {x | ϕ}, read as “the set of all x such that ϕ,” by

{x | ϕ}:∀x.(x ∈ y ⇔ ϕ)

where the variable y is chosen from context. Although this is not a
function, one should interpret the free variables of ϕ excluding x as
inputs and y as the output. Intuitively, if such a y exists, it should be
interpreted as the set of all sets x satisfying ϕ.

This does not exist for all propositions ϕ. In particular, we know
that {x | x = ∅} exists but that {x | x /∈ x} does not exist. However,
we know that {x ∈ y | ϕ} = {x | x ∈ y ∧ ϕ} always exists by the axiom
of specification.

7π is the lowercase Greek letter π. This use of π has no relation to the circle
constant 3.14 . . ., instead just referring to projection.

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 79

Let us define one further extension of the set builder notation.

Definition 4.6.5. For propositions ϕ and ψ and variables x1, . . . , xn
and y, define the proposition {ψ:x1, . . . , xn 7→ y | ϕ}, read as “the set
of all ψ such that ϕ,” by

{ψ:x1, . . . , xn 7→ y | ϕ}: {y | ∃x1, . . . , xn. ψ ∧ ϕ}.
Intuitively, ψ should be thought of as a function mapping sets

x1, . . . , xn to sets y, and the set {ψ:x1, . . . , xn 7→ y | ϕ} should be
interested as the set of all outputs y corresponding to some inputs
x1, . . . , xn which satisfy ϕ. In most cases, the variables x1, . . . , xn 7→ y
are known from context and so are omitted.

This definition may look obtuse; however, it is fairly natural to use in
practice. For example, {nS | n ∈ N}. Here, we could have specified that
n is the output and the free variable of nS is the output, but since nS is
a function, this is clear from context. This is the set of all successors of
natural numbers. Thus, {nS | n ∈ N} = {n ∈ N | n 6= 0}. As another
example {(n, nS) | n ∈ N} is the set {(0, 1), (1, 2), (2, 3), . . .}.

With this, we can create an extremely important definition.

Definition 4.6.6. Suppose that ϕ is a proposition in the free variables
x1, . . . , xn. ϕ is said to be small if {(x1, . . . , xn) | ϕ} exists and is called
large otherwise. Alternatively, ϕ is small if

∃y.∀z. (z ∈ y ⇔ ∃x1, . . . , xn. z = (x1, . . . , xn) ∧ ϕ)

where y and z are unused variables. That is, a proposition is small if
the truth of the proposition is equivalent to membership in some set y.

Thus, x = ∅ is small and x /∈ x is large. Intuitively, a set is small
whenever its solutions are few enough to be placed in a set. That is,
whether or not {(x1, . . . , xn) | ϕ} is a set is a matter of size, rather than
something else. This leads us to the following conclusion. Suppose that
Φ is a function Φ:x 7→ y. Then, for some set z, {Φ:x 7→ y | x ∈ z} =
{Φ | x ∈ z} must also be a set. This is because, since z is a set and Φ
maps each x to exactly one y, the set of all y’s must be no larger than
the set z. We codify this in an axiom.

80 DAVIS DEATON

Axiom 4.8. The axiom of replacement states that for a proposition ϕ
in the variables w1, . . . , wn, x, y, z, and v a variable unused in ϕ,

repl.
∀w1, . . . , wn. ∀z. (∀x. (x ∈ z ⇒ ∃!y. ϕ)⇒ ∃v.∀y. (y ∈ v ⇔ ∃x. x ∈ z ∧ ϕ)) .

Intuitively, this states that if ϕ is a proposition such that all values x in
a set z are each assigned to exactly one value of y, then there is some
set v containing all such values y. As described, this is some sort of
smallness preservation axiom.

This is the longest and most complicated axiom we have presented
so far. However, its intuition is quite natural. Like the axiom of set
induction, this axiom is not needed for more of mathematics. However,
we keep it around so that using functions is easier.

4.7. Multi-valued Functions. For completeness, we will also describe
multi-valued functions. Here, we present the full definition of a proposi-
tional function.

Definition 4.7.1. A proposition Φ in the free variables x1, . . . , xn and
y1, . . . , ym is a (propositional) function if

∀x1, . . . , xn.∃!y1, . . . , ym.Φ.

The variables x1, . . . , xn are called the inputs and the variables y1, . . . , yn
are called the outputs. If Φ has one output, it is called single-valued.
If Φ has no inputs, it is called a constant. If Φ is constant and single-
valued, it is called a propositional set. If Φ is a function in the inputs
x1, . . . , xn and the outputs y1, . . . , yn, we write

Φ:x1, . . . , xn 7→ y1, . . . , ym,

read as “Φ maps x1, . . . , xn to y1, . . . , ym.” Importantly, this use of :
does not mean “is defined to be.”

This is a slight expansion of functions to allow multiple outputs as well
as multiple inputs. Like before, a function Φ:x1, . . . , xn 7→ y1, . . . , ym
should be thought of as a unique sequence of sets y1, . . . , ym for each
choice of sets x1, . . . , xn.

Since we now have multiple outputs, we need to expand our proposi-
tional replacement syntax to support these new functions.

Definition 4.7.2. Suppose ϕ and ψ are propositions and x1, . . . , xn are
variables. Then, the propositional variable assignment [x1, . . . , xn:ψ]ϕ
is shorthand for

[x1, . . . , xn:ψ]ϕ:∀x1, . . . , xn. (ψ ⇒ ϕ).

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 81

This is only defined when the right side is a proposition. It is sufficient
to assume that no free variable of ϕ is bound in ψ and vice versa and
that the xi are not bound in ψ or ϕ. This definition technically makes
sense for all propositions, but it is most meaningful when ψ is a function.

In particular, if Ψ is a function Ψ : x1, . . . , xn 7→ y1, . . . , ym and Φ
is a function Φ: z1, . . . , zk 7→ w1, . . . , wl (presumably such that there is
overlap between the y1, . . . , ym and the z1, . . . , zk), then [y1, . . . , ym: Ψ]Φ
is a function whose inputs are the x1, . . . , xn and those z1, . . . , zk which
are not in y1, . . . , ym and whose outputs are the w1 . . . , wl.

Lastly, we present a modification of set builder notation to support
multivalued functions.

Definition 4.7.3. For proposition ϕ and ψ and free variables x1, . . . , xn
and y1, . . . , ym define the proposition {ψ:x1, . . . , xn 7→ y1, . . . , ym | ϕ},
read as “the set of all ψ such that ϕ,” by

{ψ:x1, . . . , xn 7→ y1, . . . , ym | ϕ}: {(y1, . . . , ym) | ∃x1, . . . , xn. ψ ∧ ϕ}.
In most cases, the variables x1, . . . , xn 7→ y1, . . . , ym are clear from
context, and so are omitted. This makes most sense when ψ is a func-
tion. Intuitively, this is the set of all sequences (y1, . . . , ym) of outputs
corresponding to inputs x1, . . . , xm such that ϕ holds. Technically, if
m = 1, this conflicts with the old set builder notation. In particular,
this notation creates a set of all 1-element tuples (y) rather than a set
of plain old sets y. Thus, context will determine whether (y) or y is
meant (but it will almost always be y).

4.8. Internal Functions and Finiteness. The axiom of replacement
hints at something important: a proposition that is almost a function
except that it only makes inputs x to outputs y if the inputs are in a set
z. Further, since the inputs come from the set z, the outputs are also
in some set (this is the axiom of replacement). Consider a proposition
Φ such that ∀a. (a ∈ c⇒ ∃!b.Φ). For every value a ∈ c, there is exactly
one pair (a, b) such that Φ. Thus, {(a, b) | Φ} should have the same
size as c and thus should be a set. To demonstrate this, we will need a
way to build sequences where each component comes from a fixed set.

Definition 4.8.1. For a sequence of variables x1, . . . , xn, define the
proposition 〈x1, . . . , xn〉, read as “the product of x1, . . . , xn,” by

〈〉: {()}
and

〈x1, . . . , xn〉: {z ∈ (x1 ∪ 〈x2, . . . , xn〉)PP | ∃h, t.
z = {{h}, {h, t}} ∧ h ∈ x1 ∧ t ∈ 〈x2, . . . , xn〉}.

82 DAVIS DEATON

These are guaranteed to exist by the axioms of union, power set, and
specification. This definition states that 〈〉 is the set containing the
(unique) empty sequence and that 〈x1, . . . , xn〉 is the set containing
sequences whose head is in x1 and whose tail is in 〈x2, . . . , xn〉. Thus,
〈x1, . . . , xn〉 is the set of all sequences of length n whose i-th component
is in xi.

Now, consider a proposition Φ such that ∀a. (a ∈ c ⇒ ∃!b.Φ). By
the axiom of replacement, {Φ: a 7→ b | a ∈ c} is a set. Call this set d.
Thus, {(a, b) | a ∈ c ∧ Φ} = {(a, b) ∈ 〈c, d〉 | Φ} which then exists by
the axiom of specification. If it is also the case that Φ⇒ a ∈ c, then
{(a, b) | Φ} is this same set, and so thus Φ is small. This leads to the
following definition.

Definition 4.8.2. For variables f , x, and y, define the proposition
f :x→ y, read as “f is a function from x to y,” by

(f :x→ y): f ⊆ 〈x, y〉 ∧ ∀u. (u ∈ x⇒ ∃!v. (u, v) ∈ f)

where u and v are other variables. If f :x→ y, f is said to be a function
with domain x and codomain y. Like before, the : in f :x→ y is not
“is defined to be.” Also, notice the difference between Φ:x 7→ y, which
says that x and y are free variables of Φ and f :x→ y which says that
x and y are sets which the inputs and outputs come from.

It is easy to extend this to multiple inputs and outputs. For variables
f , x1, . . . , xn and y1, . . . , ym, define the proposition f :x1, . . . , xn →
y1, . . . , ym by

(f :x1, . . . , xn → y1, . . . , ym): f ⊆ 〈x1, . . . , xn, y1, . . . , ym〉∧
∀u1, . . . , un. (u1 ∈ x1 ∧ · · ·un ∈ xn ⇒
∃!v1, . . . , vm. (u1, . . . , un, v1, . . . , vm) ∈ f)

where u1, . . . , un and v1, . . . , vm are other variables. If f :x1, . . . , xn →
y1, . . . , ym then f is said to be a function with domains x1, . . . , xn and
codomains y1, . . . , ym.

If f :x1, . . . , xn → y1, . . . , ym, then for variables u1, . . . , un, define the
proposition [u1, . . . , un]f , read as “the value of u1, . . . , un under f” or
just “u1, . . . , un f ,” by

[u1, . . . , un]f : (u1, . . . , un, v1, . . . , vm) ∈ f
where the variables v1, . . . , vm are chosen from context. This is called
evaluation. The set, or sequence of sets, corresponds to the unique values
v1, . . . , vm of y1, . . . , ym which correspond to the inputs u1, . . . , un under
the function f . Values in x1, . . . , xn are chosen for u1, . . . , un, then

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 83

[u1, . . . , un]f becomes a constant. If f has a single codomain, this is a
propositional set.

Since [u1, . . . , un]f acts like a propositional function, it can be used
like one in any context where a propositional function could be used. If
f has a single domain, one is free to write vf rather than [v]f .

This definition is rather complicated, but its intuition is simple. Thus,
let us look at an example.

Example 4.8.3. Consider the set s = {(n, nS) | n ∈ N}. Since nS ∈ N
if n ∈ N, s ⊆ 〈N,N〉. Further, for each n ∈ N, there is a unique m ∈ N
such that (n,m) ∈ s. In particular, this value of m is nS. Thus, s is
an internal function. In particular, s : N → N. This set s, in effect,
encodes the function nS over the natural numbers as a set rather than
a proposition. With our evaluation syntax, ns is the unique m such
that (n,m) ∈ s and so is nS. That is, ∀n ∈ N, ns = nS. We could
repeat this procedure for any propositional function.

We could also consider a special set idN = {(n, n) | n ∈ N} called the
identity function on N. As the name implies, idN :N→ N. In this case,
for n ∈ N, n idN = n.

Let us form the set t = {(n, nS, nSS) | n ∈ N}. In this case,
t ⊆ 〈N,N,N〉. If we want this to be a function, it could either be that
t:N,N → N or t:N → N,N. However, since there is no m such that
(0, 0,m) ∈ t, we can conclude that t is not a function with two inputs.
It is, however a function with two outputs, because for each n ∈ N,
there is exactly one pair m1,m2 such that (n,m1,m2) ∈ t.

As a non-example, let us consider the set p = {(n, nS) | n ∈ N} ∪
{(nS, n) | n ∈ N}. Here, it is still that p ⊆ 〈N,N〉, so it is conceivable
that p:N→ N. We can realize that (1, 0) and (1, 2) are both elements
of p, and thus there is not a unique m such that (1,m) ∈ p, and thus p
is not a function.

It is a property of every function f :x→ y that f = {(v, [v]f) | v ∈ x}.
The most important feature of functions is that they can be composed.
Recall that a function is an assignment of inputs from a set x to outputs
in a set y. If there is another function which takes inputs from y to
outputs in some set z, we could conceivably use an input from x to
produce a value of y using the first function, then use this value and the
second function to produce a value of z. This will make every element
of x to an element of z, and thus should be a function.

84 DAVIS DEATON

Definition 4.8.4. For functions f :x → y and g: y → z for some
variables x, y, and z, define the composite of f and g, written as f ; g
and read as “f then g,” by

f ; g: {(u, [[u]f]g) | u ∈ x},
where u is another variable. With this definition the composite is a
function f ; g:x→ z. If f :x→ y and g: y → z for some variables x, y,
and z, then f and g are called composable.

Exercise 4.8.1. Composition of functions has a variety of nice proper-
ties. Prove or otherwise convince yourself of the following:

(1) (f ; g) ;h = f ;(g ;h). This justifies writing f ; g ;h to refer to
either.

(2) [u](f ; g) = [[u]f]g].

Now is as good of a time as any to discuss how this notation differs
from the standard mathematical convention. First, most authors use ()
rather than [] for functions, but I find [] to be better, as I do not use
it as a grouping symbol, it not the same as the notation for sequences,
and it looks like variable assignment. Also, most authors put the inputs
after functions, rather than before. The convention where inputs come
first is called backward notation because it is backwards compared to
the standard convention. I have chosen backwards notation so that the
composition operator takes an f :x→ y and a g: y → z and produces
f ; g:x → z. If the standard convention is used, the composition
operator instead takes a function f : y → z and a function g:x→ y and
produces f ◦ g:x → z. This is so that (f ◦ g)[u] = f [g[u]] when the
input is written after. I think this is more confusing, because the second
function to appear (g) is applied first. With the backwards notation,
in f ; g, f is applied, and then g is applied. That is, [u](f ; g) = [[u]f]g.
My choice of convention also applied to operators like ¬ and

⋃
which

generally precede their arguments, rather than come after like we have
written. I am strongly of the opinion that this backwards notation is
superior. There is less extraneous notation to both read and write, and
further, the meaning is clearer in terms of sequentiality.

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 85

There is a special function that exists for every set. In fact, it is one
we have already mentioned.

Definition 4.8.5. For a variable x, define the identity function on x,
written as idx and read as “id x,” as

idx : {(u, u) | u ∈ x}.
With this notation, idx :x→ x.

The identity functions satisfy the important property that for a
function f :x→ y, idx ; f = f = f ; idy.

There are some special kinds of functions that will be useful to us.

Definition 4.8.6. A function f :x→ y is called injective when

∀u1, u2. (u1 ∈ x ∧ u2 ∈ x ∧ [u1]f = [u2]f ⇒ u1 = u2)

where u1 and u2 are other variables. That is, a function is injective
when, if any two inputs with equal outputs are equal, or in other words
that no distinct inputs are sent to the same output. That f :x→ y is
an injective function, also called an injection, is a proposition in the
free variables f , x, and y.

Definition 4.8.7. A function f :x→ y is called surjective when

∀v. (v ∈ y ⇒ ∃u. u ∈ x ∧ [u]f = v)

where u and v are other variables. That is, a function is surjective
when every possible output value in the codomain is actually the output
corresponding to some input in the domain. That f :x→ y is a surjective
function, also called a surjection, is a proposition in the free variables
f , x, and y.

These two properties can be combined into a single term.

Definition 4.8.8. A function f :x → y is called bijective when it is
both injective and surjective. A bijective function may also be called a
bijection. Alternatively a bijection f :x→ y is a function such that

∀v. (v ∈ y ⇒ ∃!u. (u, v) ∈ f)

where u and v are other variables. That is, a function is bijective
whenever each output in the codomain is mapped back to a unique
input in the domain. If there exists a bijection f :x→ y, then x and y
are called bijective. That x and y are bijective is a proposition in the
free variables x and y.

86 DAVIS DEATON

There is an alternative characterization of a bijection which is perhaps
more important than the one above.

Theorem 4.8.9. A function f :x→ y is a bijection if and only if there
is a function g: y → x such that f ; g = idx and g ; f = idy. Further,
this function g is unique.

Proof. First, suppose that f :x → y is a bijection. We wish to show
that there is a function g: y → x such that f ; g = idx and g ; f = idy.
Let g: {([u]f, u) | u ∈ x}. This is a function because each v ∈ y has a
unique u ∈ x such that [u]f = v. Further, [[u]f]g = u for u ∈ x. In
fact, this shows that f ; g = idx (because f ; g is simply pairs (u, u)).

We also wish to show that g ; f = idy. To accomplish this, take
some v ∈ y. Then, take the unique u ∈ x such that [u]f = v. This is
guaranteed to exist since f is a bijection. Then, [v](g ; f) = [[v]g]f =
[[[u]f]g]f = [u]f = v. That is, [v](g ; f) = v for v ∈ y, and thus
g ; f = idy. This is what we desired to prove.

Next, suppose that f :x→ y is a function and there exists a g: y → x
such that f ; g = idx and g ; f = idy. Consider some v ∈ y. Let u: [v]g.
Then, u ∈ x. Further, [u]f = [[v]g]f = v since g ; f = idy. Thus, every
v ∈ y corresponds to some u ∈ x such that [u]f = v. If this u is unique,
the f is bijective. Thus, suppose that u1 and u2 are elements of x such
that [u1]f = [u2]f = v. Then, [[u1]f]g = [[u2]f]g and so u1 = u2 since
f ; g = idx. Thus, this value of u is unique, and so f is bijective.

As a final note, this g is unique. In particular, suppose that g1 ; f = idy

and f ; g2 = idx. Then g1 = g1 ; idx = g2 ; f ; g2 = idy ; g2 = g2. �

Definition 4.8.10. If f is a bijection f :x→ y, then let f−1, read as
“f inverse,” be the unique function f−1: y → x such that f ; f−1 = idx

and f−1 ; f = idy.

If a bijection f is thought of as an algorithm or procedure for con-
structing elements of y from element of x, then f−1 is the procedure
which undoes this procedure.

Bijections are particularly important in set theory because they repre-
sent that two sets have the same “size.” In many areas of mathematics,
we can only wish to work with sets with a finite number of elements.
We know of some finite sets already. The prototypical example is the
natural numbers: the set corresponding to the natural number n has n
things in it. In fact, we would like to consider a set finite if and only if
it has a natural number of things in it. Thus, we present the following
definition.

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 87

Definition 4.8.11. A set x is called finite if there exists an n ∈ N and
a bijection f :x→ n. In particular, we say that is has cardinality n.

An obvious theorem is that every subset of a finite set is a finite set.
That is, if you have a finite set and remove some elements, then you
are still left with a finite set.

Proof. We will use the induction principle of the natural numbers to
show that every subset of a finite set with cardinality n is finite.

First, we will show that every subset of a set with cardinality 0 is
finite. Thus, suppose a is a set with cardinality 0. That is, a is bijective
with the empty set. Since every element of a corresponds to an object
of the empty set, and there are no elements of the empty set, a must
have no elements and be empty too. Thus, if b is a subset of a, then b
must be a and so b is bijective to 0 so is finite. That is, every subset of
a set with cardinality 0 is finite (and has cardinality 0).

Next, suppose that every subset of a set with cardinality n is finite
for n ∈ N. We will show that every subset of a set with cardinality nS
is finite. Thus, suppose a is a set with cardinality nS and suppose b
is a subset of a. We will show that b is finite. Let f : a → nS be a
bijection, as promised by the fact that a has cardinality n. If b = a,
then f is a bijection from f : b→ n and so b is finite.

If b 6= a, then there must be some element of a missing from b.
That is, there must be an element c ∈ a such that c /∈ b. Let d be
the unique element of a such that [d]f = n or that (d, n) ∈ f . This
is guaranteed to exist since f is a bijection. Now, we will make a
new bijection g : a → nS using these elements. Let g denote the set
{(e, [e]f) | e ∈ a ∧ e /∈ {c, d}} ∪ {(c, n)(d, [c]f)}. That is, g is the set
of all input-output pairs in f such that the input is not either of out
elements c or d along with the ordered pairs (c, n) and (d, [c]f), which
are the inputs c and d with their outputs exchanged. It is still the
case that each input e ∈ a appears in exactly one ordered pair, and
thus g is a function. Further, every output in nS is corresponds to
exactly one input, either its original input if it is not n or [c]f , and
c or d respectively if it is n or [c]f . Thus, g is a bijection g: a → nS.
The important property of g is that [c]f = n. That is, the element of a
missing from b is the “last” element of a.

We will make one final bijection h = {(e, [e]g) | e ∈ a ∧ e 6= c}. This
is the set of input-output pairs in h with the pair (c, n) removed. This
is a bijection h: {e ∈ a | e 6= c} → n. This is because each element e of
a other than c gets mapped into n by g because [c]f = n is the only
element of nS that is not in n (since nS = n∪{n}). Since n is the only
output whose pair was removed, every element of n still corresponds

88 DAVIS DEATON

to a unique input in a which is not c. Thus, h: {e ∈ a | e 6= c} → n is
a bijection. That is, {e ∈ a | e 6= c} has cardinality n. That is, if we
remove one element of a finite set, its cardinality goes down by 1.

Importantly, since c /∈ b, b ⊆ {e ∈ a | e 6= c}, thus b is a subset of
a set of cardinality n and thus b is finite by our inductive hypothesis.
Thus, we have shown that if every subset of a set of cardinality n is
finite, then every subset of a set of cardinality nS is finite. Using the
induction principle of the natural numbers, this proves that a subset of
any set with any natural number cardinality is finite. This is exactly
that every subset of a finite set is finite. �

Not all sets are finite. This is guaranteed by the axiom of infinity. In
particular, N cannot be finite because for each n ∈ N, it contains all
the elements of n (which are the smaller natural numbers) as well as n
itself. Without the axiom of infinity, we do not know that there is an
infinite set, but we also do not know that all sets are finite.

4.9. Choice and the Law of the Excluded Middle. We will now
present the final axiom of set theory. This final axiom is what distin-
guishes ZF from ZFC. This is also the most controversial axiom of set
theory.

Axiom 4.9. The axiom of choice states that

choice
∀a.
(
∅ /∈ a⇒ ∃f.

(
f : a→ a

⋃)
∧ ∀b.(b ∈ a⇒ [b]f ∈ b)

)
.

This axiom states that for every set a, if a does not contain the empty
set, then there exists a choice function f which takes, as inputs, the
elements of a, and yields, as outputs, the elements of the elements of a
with the property that each set b ∈ a is mapped to an element of itself.
That is, such that for b ∈ a, [b]f ∈ b. In effect, this function f “chooses”
from each b an element of b. Since each element of a is not empty, this
axiom asserts that we can choose an element of each of them.

This axiom is controversial because it does not explain how one
is supposed to pick an element of each set b ∈ a. If the truth of a
proposition is interpreted to mean “we can prove it,”, then the axiom
of choice would be interpreted as saying that we can construct each
choice function (as that is what a proof would be). The axiom of choice
is an axiom, and it is not provable from the other axioms of set theory.
Further, there are versions of set theory in which the axiom of choice is
false.

Most modern mathematicians, however, embrace the axiom of choice.
The intuition is obvious, and there are some particularly nice results

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 89

that do not hold in the absence of choice. Additionally, choice can
simplify some otherwise complicated proofs. We will not have much use
for the axiom of choice, but we present it here for completeness’s sake.

As mentioned in the section on formal logic, the axiom of choice can
be used to prove the law of the excluded middle, that is that every
proposition is either true or false. One does not have to accept the law
of the excluded middle, and in fact many don’t, but all who do not
accept the law of the excluded middle also cannot accept the axiom of
choice.

Theorem 4.9.1. The law of the excluded middle states that for a
proposition ϕ,

l.e.m.
¬ϕ ∨ ϕ .

This is also called Diaconescu’s theorem.

Proof. Consider a proposition ϕ and a variable x unused in ϕ. Using
the axiom of pairing and our construction of the natural numbers, we
can create the set B: {0, 1}. We can then create the sets

u: {x ∈ B | x = 0 ∨ ϕ}
and

v: {x ∈ B | x = 1 ∨ ϕ}.
Using the law of the excluded middle, u is the set {0} if ϕ is false and
is {0, 1} if ϕ is true, and v is the set {1} if ϕ is false and {0, 1} if ϕ is
true. But, we cannot assert this, since we are trying to prove the law of
the excluded middle. Importantly, if ϕ is true, then u = v.

Using the axiom of a choice, there is a function f : {u, v} → B such
that [u]f ∈ u∧ [v]f ∈ v. From the definitions of u and v, we know that

([u]f = 0 ∨ ϕ) ∧ ([v]f = 1 ∨ ϕ)

and so that either [u]f = 0 and [v]f = 1 or ϕ. In particular, [u]f 6=
[v]f ∨ ϕ. Since ϕ⇒ u = v, it is also that ϕ⇒ [u]f = [v]f . Therefore,
if [u]f 6= [v]f , then ϕ¬.8

So, we have that [u]f 6= [v]f ∨ ϕ, and if [u]f 6= [v]f , then ϕ¬, so we
must have that ϕ¬ ∨ ϕ. �

Thus, even if you decided not to believe that there are only two truth
values, this can now be seen as a result of the axioms of set theory.

8This is because [u]f 6= [v]f is that [u]f = [v]f ⇒ ⊥, so thus ϕ ⇒ ⊥ by
transitivity which is ϕ¬.

90 DAVIS DEATON

4.10. Summary. Let us consider what we have done in this section.
We started with a notion of a set as an unordered collection of other
sets, counted without repetition. We said that such a notion cannot be
purely formal, as some notion must be informal. Therefore, we had no
way to agree upon exactly what a set is. We reconciled these potential
differences by agreeing upon nine rules, really axioms, for how sets
behave.

The axiom of extensionality described, in effect, a property of sets;
that a set is fully determined by its elements. The majority of other
axioms allowed us to construct other set from sets we already have.
Specification let us craft certain subsets, pairing let us create pairs of
sets, union let us create even larger sets, power set let us create sets of
subsets, replacement let us apply functions to sets to get other sets, and
infinity let us actually create a set (namely the set of natural numbers).
The axiom of set induction allowed us to prove properties of sets with
an induction principle. Rather than asserting the existence of new sets,
this, somewhat, set a restriction on how large sets are allowed to be.

Finally, the axiom of choice allowed us to create choice functions.
Except it actually didn’t: it only asserted that they exist. The other
axioms, excluding set induction and extensionality, each allowed us to
define new propositional sets, that is show that certain propositions
have a unique solution. Choice did not allow us to write down arbitrary
choice functions as propositional sets. This is what separates the axiom
of choice from the other axioms of set theory.

4.11. Recommended Reading. Although set theory is the founda-
tion for most of modern mathematics, it is rarely covered in rigorous
detail. I recommend Jech[8] for an in-depth description of most topics
in set theory. An easier read which still covers the basic topics of set
theory is Epp’s[4] discrete mathematics textbook. This book covers
much more than set theory, and does not cover set theory in rigorous
detail, but it has plenty of exercises and examples which might be useful
in comparison to the purely formal description I have presented. There
are also plenty of PDFs of set theory books floating around on the
internet.

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 91

5. Graph Theory and Complexes

The character of this document will now change slightly. Up until this
point, we have been speaking about mathematics, then about logic, then
about set theory. Now we will be talking about discrete geometry, but
we will be talking in (the language of) set theory. Consequently, instead
of saying “for some variable x” or “for some proposition ϕ,” we will be
saying “for some set x” or “for some function f .” We already started
speaking this way towards the end of the section on set theory. This
becomes useful when the propositions described (i.e. f is a bijection
from x to y) become cumbersome to notate. The ability to speak in the
language of set theory is the entire reason why we spent so long talking
about set theory.

The purpose of this section is not to present important facts about
shapes, or provide a better understanding of shapes, or anything like
that. Instead, this section is supposed to explain how shapes can be
represented as mathematical objects, thus allowing shapes (pictures) to
be reasoned about with symbols.

In this section, we will tend to pretend that certain things which are
not sets are, in fact, sets. For example, we have shown that natural
numbers can be regarded as sets, but we have not shown, for example,
that people are sets. This is also somewhat of an absurd claim, for I
am relatively certain that the identity of a person is not fully specified
by their elements. However, since we have natural numbers, and also
sequence of natural numbers, we can make English words in set theory.
All we have to do is assign a number to each letter (there are pre-existing
ways to do this, like ASCII or Unicode). Then, perhaps a person is fully
specified by their name, social security number, birth date, etc. Then,
a set of people, is a set of this information. Or perhaps a Twitter user
is fully specified by their user ID, and so a set of Twitter uses is a set
of natural numbers indicating their IDs.

This will lead to a distinction between objects which we mean to be
sets and objects which are only sets because everything is a set. Sets
that are intended to be sets will generally be notated with capital letters
(A, B, X), and sets which are intended primarily as elements will be
notated with lowercase letters (a, v, x).

Finally, this section will be the first one to use visualizations. This is
because the section is about geometry, and geometry is about pictures.
The previous sections might well have benefited from visualizations too,
however I did not think that justified the expansion of the length.

92 DAVIS DEATON

5.1. Relations. In the section on small propositions, we discussed how
propositions may be encoded as subsets of product sets. Later, we
acknowledged that a special case of 2-variable propositions, single-value
functions, were particularly important. In fact, it is the case that
2-variable propositions themselves are particularly important.

Definition 5.1.1. A relation between sets X and Y is a set R ⊆ 〈X, Y 〉.
If x ∈ X and y ∈ Y , we write xRy, read as “x is related to y,” for the
proposition (x, y) ∈ R and x��Ry, read as “x is not related to y,” for the
proposition (x, y) /∈ R.

Intuitively, a relation R between X and Y is a set of pairs of (x, y)
which are “related” in some way.

For example, if X is the set of people and Y is the set of books, then
R could be the set of all pairs (x, y) such that the person x has read
the book y. Then, the proposition xRy would be interpreted as x has
read y. As another example, X and Y could both be the set of Twitter
uses, and R could be the set of all (x, y) such that x follows y.
X and Y could both be the set of natural numbers excluding 0 (that

is the set N+ = {n ∈ N | n 6= 0} and the relation R could be the set d
of all (a, b) such that a divides b in the sense of conventional arithmetic.
We can draw this relation.

Figure 1. The divisibility relation on N.

This is generally how we draw relations: the set X on one side, the
set Y on the other, and an arrow from the element of X to the elements
of Y when they are related. With this description, functions have a
particularly nice form.

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 93

Figure 2. The successor relation on N, which is a function.

In particular, a relation is a function whenever each input has exactly
one arrow coming from it.

A bijection is even nicer.

Figure 3. A bijection on the set 6 = {0, 1, 2, 3, 4, 5}.

In particular, a function is a bijection whenever each output has
exactly one arrow going to it.

In each of the cases we just listed, the relations we defined have been
between a set and itself. These relations have a special name.

Definition 5.1.2. A directed graph G is a pair (V,E) where V is a set
and E is a relation from V to itself V . The set V is called the set of
vertices and the set E is called the set of edges. If uEv for u and v in
V , then u and v are called adjacent.

94 DAVIS DEATON

Graphs are generally drawn differently from relations. In particular,
since the edge relation is always from the vertices to the vertices, we
only draw the vertex set once. Let us redraw the previous bijection as
a graph.

Figure 4. The previous bijection drawn as a graph.

Directed graphs are important both in pure mathematics and in appli-
cations. For example, the connections between websites is represented
as a directed graph (the website x links to the website y) and Google
uses this graph to determine how relevant or popular a website is.

5.2. Graphs and Complexes. Graphs are often used to represent
shapes. In such cases, the direction of edges does not really matter.
Thus, we use our unordered pairs {u, v} rather than our ordered pairs
(u, v).

Definition 5.2.1. An (undirected) graph G is a pair (V,E) where V
is a set and E is a set of 2-element subsets of V (that is, E ⊆ {{u, v} |
u ∈ V ∧ v ∈ V ∧ u 6= v}). If {u, v} ∈ E, we write uEv and say that u
and v are adjacent.

Because {u, v} = {v, u}, uEv if and only if vEu. Thus, graphs are
undirected. We draw (undirected) graphs much in the same way that
we draw directed graphs. Graphs are good at representing certain types
of “shapes.” In particular, there is a graph I6 representing an interval
of length 6 and a graph C5 representing a cycle of length 5.

Figure 5. The interval graph I6 and the cycle graph C5.

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 95

Importantly, graphs are not pictures. Instead, they are pairs of sets.
However, the pictures that we draw fully determine the sets. For example
I6 = ({0, 1, 2, 3, 4, 5, 6}, {{0, 1}, {1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}}).

Exercise 5.2.1. Write down C5 as a pair of sets.

Not all graphs can be drawn with only straight, non-overlapping
edges. This is perfectly okay.

Figure 6. The complete graph K5. This graph cannot
be drawn on paper without overlap.

Further, the same graph can drawn in multiple ways, and drawings
that look like the same may be different graphs if the labels are different.

Figure 7. Two ways of drawing the graph C5 and a
different graph that looks like C5 but is not due to the
names of the vertices.

96 DAVIS DEATON

It is clear from the drawings that C5 represents a pentagon. Suppose
that I asked you to imagine an ant walking on C5. What would you
imagine? I would guess that you would imagine the ant walking on
the border of the pentagon. However, if I asked you to imagine an ant
walking on this shape,

Figure 8. A pentagon.

I would guess that the ant would be walking on the pentagon itself.
I bring attention to this scenario to point out that a graph can only
represent low-dimensional (in particular one dimensional) data. That
is, we cannot make a two dimensional shape using graphs. For this, we
need a new notion.

First, recognize that many two dimensional surfaces can be repre-
sented using only triangles. For example, the surface of a cube can be
constructed with two triangles for each side. Further, it is a common
technique for video games and animation software to represent models
by triangulating their surface. In the same way that graphs can repre-
sent many one dimensional shapes with only simple ones (edges), we
will make two dimensional shapes using only simple ones (triangles).

However, if we want to make a three dimensional shape (one that
is “filled-in”), we cannot use triangles. The next jump is to create a
tetrahedron. This is, in effect the simplest three dimensional shape.

Figure 9. A tetrahedron. This should be imagined as
“filled in” in three dimensions.

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 97

It is not too big of a leap to claim that many three dimensional
shapes can be built from tetrahedrons.

Mathematics does not care how we draw things. Mathematics does
not care that our world is (basically) three dimensional. So, mathematics
will let us build n-dimensional shapes from n-dimensional simplices.

Figure 10. The first few simplices.

We cannot draw the higher dimensional simplices very easily, but
they still exist mathematically. The important thing to recognize about
simplices is that an n dimensional simplex has n + 1 vertices and is
“filled in” in all n dimensions.

This leads us to the following definition.

Definition 5.2.2. A (abstract) simplicial complex S is a pair (V,C)
where V is a set and C is a set of finite subsets of V such that if c ∈ C
and d ⊆ c, then d ∈ C, {v} ∈ C for each v ∈ V , and ∅ ∈ C. The set V
is called the vertices and the set C is called the simplices or cells. If
c ∈ C and d ⊆ c, then d is called a face of c. The cells of cardinality
nS are called n dimensional cells or just n cells. Simplicial complexes
are often called complexes when the context is clear.

In the case of a graph G, {u, v} ∈ E meant that there was an edge
(a one dimensional simplex) between u and v. For a simplicial complex,
if {v0, . . . , vn} ∈ C, we interpret that as meaning that there is an n
dimensional simplex with the vertices v0, . . . , vn. For example, if there is
{u, v, w} ∈ C, then we understand that there is a triangle with vertices
u, v, and w. The condition that if c ∈ C and d ⊆ C implies that d ∈ C
means that if there is a simplex in the complex S, then each face is also
a simplex in the complex. For example, if {v0, v1, v2, v3}, then there
is a tetrahedron in the complex, which has four triangular faces, and
so there are also four triangles {v1, v2, v3}, {v0, v2, v3}, {v0, v1, v3}, and
{v0, v1, v2} in the complex. The condition that each {v} ∈ C for v ∈ V
is that each vertex of the complex is a zero dimensional simplex (a
point) in the graph. The condition that ∅ ∈ C is that each complex
S contains the unique “-1 dimensional” simplex. This is more of a
mathematical convenience rather than anything important. In fact,
some mathematicians requires that the empty set is not in C, but that
results in a different set of complications.

98 DAVIS DEATON

Let us draw some simplicial complexes.

Figure 11. Three examples of simplicial complexes. The
blue regions should be regarded as two dimensional and
the purple regions as three dimensional.

Although I have not labeled these vertices, one should understand
that these points are distinct elements of some set of vertices. As seen,
these allow us to create two and three dimensional shapes as well as
ones even bigger. Importantly, complexes and graphs do not have to be
connected. Thus, we can form complexes such as this

Figure 12. A disconnected simplicial complex.

which consist of separate disconnected pieces. Again, this is a single
complex.

With the definitions we now have, graphs are technically not simplicial
complexes. This is because the edge sets of graphs contain only 2-element
subsets of the vertices, and now those subsets of the 2-element subsets.
This we present the following refinement to the definition of a graph.

Definition 5.2.3. A graph G is a simplicial complex (V,E) such that
every element of E has cardinality 0, 1, or 2.

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 99

5.3. Homomorphisms. Having a notion of complexes is not particu-
larly useful unless we understand how complexes relate to each other.
For example, there are two “copies” of C5 present in this complex.

Figure 13. A graph representing two C5s glued together
and two ways of mapping a C5 into the gluing, denoted
with red arrows.

As another example, it is possible to “wrap” I6 around C5 in the
following way.

Figure 14. A mapping of I6 into C5 by “wrapping” I6

around C5.

These relationships can be encoded by functions between the vertex
sets of complexes satisfying some sort of coherence condition. We need
to assert a coherence condition so that we forbid cases like this one.

Figure 15. A mapping of a square into a cross which
does not map edges of the square to edges of the cross.

100 DAVIS DEATON

This leads to the following definition.

Definition 5.3.1. A homomorphism f from a complex S = (VS, CS)
to a complex T = (VT , CT) is a function f :VS → VT such that if c ∈ CS,
then {[v]f | v ∈ c} ∈ CT . That is, a homomorphism between complexes
is a function between the vertex sets which maps cells to cells.

In effect, a homomorphism is a way of mapping or embedding a
complex S into a complex T .

Thus, C5 being mapped into the loops is a homomorphism, and I6

being wrapped around C5 is a homomorphism, but the mapping of the
square into the cross is not a homomorphism between adjacent vertices
in the square are not sent to adjacent vertices in the cross.

In the two examples of homomorphisms we have seen thus far, the
two dimensional cells of our complex (the edges) get mapped to edges.
However, this is not always necessary. For example, we can “collapse”
a vertex of C4 to get a copy of C3, or we can collapse a filled in triangle
onto an edge. You can think of this as “pinching” the left edge of the
triangle down to a point, bringing the rest of the triangle with it.

Figure 16. Two valid homomorphisms, denoted with
red arrows.

We cannot, however, send a filled in triangle to a hollow triangle.

Figure 17. A vertex mapping which is not a homomor-
phism. The triangular cell is not mapped to a triangular
cell.

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 101

Let us prove an extremely basic result of homomorphisms.

Theorem 5.3.2. If S = (V,C) is a complex, then define idS :S → S
to be the homomorphism idS = idV .9 This is a homomorphism.

Proof. A function is a homomorphism if it maps cells to cells. In
particular, we need to show that if c ∈ C, then {[v] idS | v ∈ c} ∈ C.
However, since idS is just idV , idS does nothing to the vertices of S.
That is, {[v] idS | v ∈ c} = {v | v ∈ c} = c. Thus, it is the case that
{[v] idS | v ∈ c} ∈ C, and so idS is a homomorphism. �

This is not particularly exciting. It says that the obvious way of
embedding a complex into itself is in fact a homomorphism of complexes.
This does mean, however, that we have not messed up our definition of
a homomorphism too badly.

A more important result is that if S can be embedded into T and
T can be embedded into U , then S can also be embedded into U . In
particular, we wish to prove the following theorem.

Theorem 5.3.3. If f :S → T and g:T → U are homomorphisms
for complexes S = (VS, CS), T = (VT , CT), and U = (VU , CS), then
f ; g:S → U is a homomorphism.

Proof. In order to show that f ; g is a homomorphism, we need to show
that if c ∈ CS, then {[u](f ; g) | u ∈ c} ∈ CS. First, let d: {[u]f | u ∈ c}.
Then, d ∈ CT since f is a homomorphism. Further, since d ∈ CT , then
{[v]g | v ∈ d} ∈ CU since g is a homomorphism. The key observation
is that {[u](f ; g) | u ∈ c} = {[v]g | ∃.u ∈ c | v = [u]f} = {[v]g |
v ∈ d}. And thus, {[u](f ; g) | u ∈ c} ∈ CU . Therefore, f ; g is a
homomorphism. �

There is a certian kind of homomorphism that is of particular impor-
tance in studying complexes.

Definition 5.3.4. A homomorphism f :S → T of complexes is called an
isomorphism of complexes if there exists a homomorphism f−1:T → S
such that f ; f−1 = idS and f−1 ; f = idT . In particular, f is an isomor-
phism whenever it is a bijection and its inverse is also a homomorphism.
If there is an isomorphism between complexes S and T , S and T are
called isomorphic and we write S ' T .

9Here idS mean the identity homomorphism of the graph, and is a homomorphism
S → S. This means that it is a function V → V , and thus it makes sense to say
that it does nothing to vertices, that it is idV . However, idS is not intended to be
the identity function on the set S = (V,C) = {{V }, {V, (C)}}.

102 DAVIS DEATON

The notion of isomorphisms explains why two different complexes
can have identical drawings without being the same. Because of the
labeling, they were not equal, but were instead isomorphic.

Figure 18. An isomorphism between two square shaped graphs.

Not all bijective homomorphisms are isomorphisms. Consider this
mapping shown below.

Figure 19. A bijective homomorphism which is not an isomorphism.

While this mapping is a bijective homomorphism, the inverse (that
is, the diagram with the arrows flipped) is not a homomorphism as we
discussed earlier.

There is an analog to injective functions, too.

Definition 5.3.5. A homomorphism f :S → T is a monomorphism
if the underlying function f :VS → VT is injective. That is, if no two
distinct vertices in S are mapped to the same vertex in T .

In effect, there is a monomorphism f :S → T whenever there is a
complete copy of S inside of T . For example, the mappings of C5 into
the two loops were monomorphisms, but the wrapping of I6 around C5

was not a monomorphism.

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 103

5.4. Inductive Definitions. Now that we have built up a significant
amount material relating to simplicial complexes, we will conclude
this thesis by creating a few simple constructions of special kinds of
simplicial complexes both with and without induction, to classify their
differences.

The first construction we will consider is complete graphs.

Definition 5.4.1. A graph G = (V,E) is said to be complete whenever
u ∈ V and v ∈ V , uEv. That is, a graph is complete if it has every
possible edge.

Definition 5.4.2. The standard complete graph Kn, for a natural
number n is the complete graph whose vertex set is the set n (recalling
that n is the set {0, 1, . . . , n− 1}).

Here, I have drawn the first few complete graphs.

Figure 20. The first few complete graphs.

Although this definition of Kn is relatively straightforward, it is not
the only one we could have chosen. In particular, notice the following
observation: K0 has no vertices. KnS is Kn with the extra vertex n
inserted and connected to all the previous vertices.

104 DAVIS DEATON

We can use this to define Kn as an inductive construction.

Definition 5.4.3. Kn is defined to be the pair (VKn , CKn) where VKn

is defined by

VK0 : ∅
VKnS

:VKn ∪ {n}
and CKn is defined by

CK0 : {∅}
CKnS

:CKn ∪ {{n, v} | v ∈ VKnS
}.

This definition says that K0 has no vertices, the vertices of K1 are
{0}, the vertices of K2 are {0, 1}, the vertices of K3 are {0, 1, 2}, etc.
This is exactly what we expect it to be.

The definition also says that K0 has no edges (but it still does have the
empty cell so that it is a complex), K1 has the cells of K0 and a cell from
0 to every other vertex so that its cells are {∅, {0}}, K2 has the cells of
K1 and a new cell from 1 to every other vertex, and the pattern repeats.
Assuming that this definition is valid, it is relatively straightforward
that this creates the same graph as our original definition.

Let us first prove that this kind of definition is valid.

Theorem 5.4.4. The recursion theorem states that for a set X, an
element x ∈ X, and a function F :N, X → X, there is a unique function
f :N→ X such that [0]f = x and [nS]f = [n, [n]f]F .

Before we prove this theorem, let us use it to prove that our definition
of VKn is valid. Rather than constructing a sequence of sets VKn , let
us think of VKn as a function f such that [n]f = VKn . Notice that
each of our sets [n]f are sets of natural numbers. Thus, let the set
X be NP. Then, notice that our definition of [nS]f is [n]f ∪ {n}.
Create a function F :N, X → X given by [n, x]F = x ∪ {n}. This takes
a natural number and a set of natural numbers to a set of natural
numbers, so this is a valid definition. Then, we have declared that
[nS]f = [n, [n]f]F . Further, let x be ∅. Then, our definition of [0]f is
that [0]f = ∅. In summary, we have used a set X, and element x ∈ X,
and a function F :N, X → X and claimed that f :N→ X is a function
such that [nS]f = [n, [n]f]F . The recursion theorem guarantees that
this function f is unique, and thus that our definition is valid.

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 105

Let us now prove the recursion theorem.

Proof. Suppose we have a set X, an element x ∈ X and a function
F :N, X → X. We wish to show that there is a unique function f :N→
X such that [0]f = x and [nS]f = [n, [n]f]F .

Consider the set

A: {U ∈ 〈N, X〉P | (0, x) ∈ U ∧ ((n, y) ∈ U ⇒ (nS, [n, y]F) ∈ U)}.
This is guaranteed to be a set by the axioms of power set and specifi-
cation. That is, A is the set of all relations U from N to X such that
0Ux and if nUy then (nS)U [n, y]F . Note the similarities between these
relations and the desired function f (f has these properties where y
takes the place of [n]f). This set A is necessarily non-empty, because
〈N, X〉 ∈ A (it contains every pair, rather than just the ones prescribed).
Therefore, this set has an intersection.

It is necessarily the case that A
⋂
∈ A because every set U ∈ A

has all the elements required to be elements of A, and thus so will
their intersection. Let us use the induction principle of the natural
numbers to show that ∀n. (n ∈ N ⇒ ∃!y.(n, y) ∈ A

⋂
), which is that

A
⋂

is a function. First, we prove this for n = 0. ∃y. (0, y) ∈ A
because (0, x) ∈ U for each U ∈ A, and thus (0, x) ∈ A

⋂
. Further,

this is unique, for if there is a pair (0, y) ∈ A
⋂

other than (0, x), then
{z ∈ A

⋂
| z 6= (0, y)} is still an element of A (because (0, y) could not

be required as 0 is not nS for any n). Thus, (0, y) couldn’t be in A
⋂

because it is not in every element of A.
Next, suppose that

∃!y. (n, y) ∈ A
⋂

.

We wish to show that

∃!z. (nS, z) ∈ A
⋂

.

This is a similar argument. Let y be the prescribed value. Since this is
in every U in A, (nS, [n, y]F) is in every U in A and is therefore also in
A
⋂

. Thus, let z be [n, y]F . If there is some other value w such that
(nS,w) ∈ A

⋂
, then it could be removed from A

⋂
while maintaining

membership in A. This is because, since there will be no (n, yw) ∈ A
⋂

such that [n, yw]F = w, the only such yw is y which satisfies [n, y]F = z.
Thus, this value (nS,w) is not in every element of A and thus is not in
A
⋂

. Therefore, the pair (n, z) is unique.
Thus, we have shown that ∀n. (n ∈ N⇒ ∃!y. (n, y) ∈ A

⋂
) and thus

that A
⋂

is a function. Denote this function by f . Then, f satisfies
the properties prescribed, because [0]f = x and if [n]f = y, then
[nS]f = [n, y]F which is that [nS]f = [n, [n]f]F .

106 DAVIS DEATON

By induction, this f is unique, for if g satisfies the required properties,
the [0]f = [0]g = x and [n]f = [n]g ⇒ [nS]f = [n, [n]f]F = [n, [n]g]F =
[nS]g, so that [n]f = [n]g for all n ∈ N by induction. Thus, we have
proven the desired claim. �

The recursion theorem is extremely powerful. It allows us to create
simple definitions for necessarily infinite structures.

Let us show how the definition of CKn is of the form of the recursion
theorem. Each such CKn is a set of sets of natural numbers, so let X be
NPP . Define a function F :N, X → X given by [n, x]F = x ∪ {{n, v} |
v ∈ VKnS

}. Since both sets in this union of sets of sets of natural
numbers, F is a valid function. Then, let x be {∅}. Using the recursion
theorem, we get a function f :N → NPP satisfying the definition of
CKn so that we can simply set CKn = [n]f .

Let us create another useful definition.

Definition 5.4.5. Define the standard n simplex ∆n: (V∆n , C∆n) by10

V∆0 : {0}
V∆nS

:V∆n ∪ {nS}
and

C∆0 : {∅, {0}}
C∆nS

:C∆n ∪ {c ∪ {nS} | c ∈ C∆n}.

This definition states that ∆0 is a complex representing a point, and
∆nS is a complex appending a new point, and extending every previous
cell by this new point.

Figure 21. Adding a new point to ∆1 to get ∆2. The
green arrows take a cell of ∆1 to its extension in ∆2. The
extension of the empty cell is the new vertex.

10∆ is the uppercase Greek letter delta. It is used here because it is shaped like
a triangle, and so is ∆2.

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 107

Because of the recursion theorem, this definition is valid. There is
actually a much simpler characterization of ∆n though.

Theorem 5.4.6. For each n ∈ N, ∆n = {nS, nSP}.

Proof. Since the ∆n are defined inductively, we can prove this theorem
using the induction principle of the natural numbers.

For n = 0, this theorem is trivial, for 1 = {0} thus V∆0 = 1, and
1P = {∅, {0}}, and thus C∆0 = nSP .

Now, assume that ∆n = (nS, nSP). We wish to show that ∆nS =
(nSS, nSSP). Since V∆n = nS, we know that V∆nS

= nS ∪ {nS} =
nSS. We know that C∆n = nSP. We wish to show that C∆nS

=
C∆n ∪ {c ∪ {nS} | c ∈ C∆n} = nSP ∪ {c ∪ {nS} | c ∈ nSP} = nSSP.
It is clear that nSP ∪ {c ∪ {nS} | c ∈ nSP} ⊆ nSSP, since every
element of nSP is in nSSP, and every element of every element of
the other set is either in nS or is nS and so is in nSS. Thus, we
need to show that nSSP ⊆ nSP ∪ {c ∪ {nS} | c ∈ nSP} To do this,
suppose we have some d ∈ nSSP. If nS /∈ d, then d ∈ nSP, and
so d ∈ nSP ∪ {c ∪ {nS} | c ∈ nSP}. Otherwise, d = {c ∈ d | c 6=
nS} ∪ {nS}. In this case, d ∈ {c ∪ {nS} | c ∈ nSP}. Thus, for any
d ∈ nSSP, d ∈ nSP ∪ {c ∪ {nS} | c ∈ nSP}. Thus an element of one
set is an element of the other, and so they are the same sets. Namely,
C∆nS

= nSSP . Therefore, we have shown that ∆nS = (nSS, nSSP).
By the induction principle of the natural numbers, we have shown

that ∀n. (n ∈ N⇒ ∆n = (nS, nSP)). �

There is not much to be gained from using the induction definition of
the simplices rather than this one. Instead, this was to present another
example of how to use induction definitions.

Exercise 5.4.1. Use the definition of Kn to prove that

Kn = (n, {∅} ∪ {(u, v) | u ∈ N ∧ v ∈ N}.

Definition 5.4.7. The path graph In is defined as the complex

In: (nS, {∅} ∪ {{k} | k ∈ nS} ∪ {{k, kS} | k ∈ n}).

That is, the graph In has nS vertices and and edge from k to kS for
each k. This means that In is just a line with n pieces.

Exercise 5.4.2. Each path graph InS is the graph In with an extra
vertex and edge appended. Codify this intuition into an inductive
definition.

108 DAVIS DEATON

5.5. Combinatorial Manifolds. The real reason that we introduced
the recursion theorem is so that we may define a more complicated
structure of an compact contractible combinatorial manifold. Let us
work with each one of those words one at a time.

All the geometry we have seen so far has been discrete: that is,
everything has been built out of finite pieces. This is not how most
of geometry is done. For example, a circle does not consist of a finite
number of edges, in any meaningful way, even though it seems similar
to graphs like C5. These more general shapes are studied in the area
of mathematics called topology. Topology, however, is complicated.
Proving results from the axioms of set theory, even simple results like
the existence of the circle, require much more work than we have done in
this thesis. In fact, the topic change from tropical geometry to discrete
geometry was in order to avoid discussing topology. Regardless, we will
still discuss the intuitions of topology.

The best behaved kind of shape in topology is a manifold. A manifold
is, intuitively, a shape that is locally flat. For example, the flat Earth
conspiracy has arisen because a sphere is a manifold. A proportionally
small piece of a sphere appears to be flat. This is not all bad, however,
for it allows us to study round things like a sphere with mathematics
developed for flat shapes. For example, high school physics does not
generally concern itself with the fact that throwing a ball 20ft actually
causes the force of gravity that the ball experience to change slightly in
direction. This is because the change is so small because the ball moves
along such a small portion of the Earth.

The discrete versions of manifolds are called combinatorial manifolds.
The basic intuition for a two dimensional combinatorial manifold is
that it is a piece of paper. Except, imagine that, for some reason, you
need a bigger piece of paper. Since you don’t have a bigger piece of
paper, you glue two pieces of paper together along an edge. This is
still, basically, a piece of paper. If you need more paper, you’re allowed
to glue more paper along its edges. But suppose that you accidentally
glue the papers into a tube. This is okay, for at every intersection of the
papers, the tube still acts basically like a piece of paper. Conceivably,
you could even glue the tubes together into a doughnut shape. However,
if you ever glued three pieces of paper together along one edge, well,
that wouldn’t look like a piece of paper at that intersection. Further,
if you glued two pieces of paper at their corners, then that wouldn’t
look like a piece of paper at the intersection either. Thus, we create the
following definitions.

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 109

Definition 5.5.1. Suppose S is a simplicial complex. S is called n
dimensional if it contains an n and no larger cells. S is called pure n
dimensional if every cell is a face of an n cell.

These let us classify how “filled in” a complex is.

Informal Definition 5.5.2. S is called an n dimensional (combinato-
rial) manifold if it is pure n dimensional and the space around every cell
“looks like” a piece of n-dimensional space. The boundary of a manifold
S, denoted by ∂S is the complex whose cells are all of the n− 1 cells of
S which appear in exactly one n cell, and each of the subcells of those
cells. There is a natural inclusion homomorphism ιS: ∂S → S for each
manifold S.11

In effect, a complex is a manifold if we never glued three pieces of
paper together or glued two at their corners. Let us consider examples
of these definitions. First, every non-empty graph is 0 or 1 dimensional.
It is 1 dimensional if it contains an edge. It is pure 1 dimensional
if every vertex is included in an edge. Here is an example of a two
dimensional complex.

Figure 22. A two dimensional complex.

This is two dimensional because it contains at least one triangle and
no higher dimensional cells. It is not pure, however, because of the stray
edge hanging off. However, this next complex is pure two dimensional.

Figure 23. A pure two dimensional complex.

11ι is the lowercase Greek letter iota.

110 DAVIS DEATON

This complex, however, is not a manifold. This is because the central
edge is shared by three triangles. A complex can also fail to be a manifold
if triangles are glued together at vertices. The impure two dimensional
complex would not be a manifold, even with the edge removed, for this
reason. Finally, we present a two dimensional manifold.

Figure 24. A two dimensional manifold.

As a particularly important example, each of the complexes ∆n are
n dimensional manifolds. Although we have only presented an informal
definition of a manifold, we will not need the precise definition to present
our final construction.

The definition of a compact contractible manifold relies heavily on
on the notion of gluing, so we need to nail down this notion. However,
it is complicated, so we’re going to work through it before we present
the full definition.

Complexes can be glued together two at a time. Thus, suppose S
and T are the following complexes.

Figure 25. The complexes S and T .

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 111

We need to express how these complexes are going to be glued. Thus,
suppose that I is the following complex.

Figure 26. The complex I.

We will define two homomorphisms fS:S → I and fG:S → I represent-
ing how the complex I should be represented in S and T respectively.

Figure 27. Homomorphisms from I into S and T , de-
noted with red and green arrows respectively.

Since 1 maps to 5 and 2 in S and T respectively, we mean to glue these
vertices together. Also that the vertex 0 and 1 in I are both mapped
to the vertex 5 in S. Thus, both 1 and 2 in T will get glued to 5 in S.
In fact, we will glue the bold square onto the bold triangle, squishing
the edge of the triangle in the process.

Before we learn how to identify vertices of a complex, we need a way
to join complexes together which avoids the difficulties of set theory.
In particular, we want a single complex which is S and T sitting next
to each other. One guess might be a union, which sticks sets together.
However, if we make a complex whose vertex set is VS ∪ VT , then the 0
in S and the 0 in T would get regarded as the same point, which we do
not want.

112 DAVIS DEATON

Instead, we define a complex U such that

VU : {(s, 1) | s ∈ VS} ∪ {(t, 2) | t ∈ VT}
CU : {{(s, 1) | s ∈ c} | c ∈ CS} ∪ {{(t, 2) | t ∈ c} | c ∈ CT}.

as well as inclusion homomorphisms iS:S → U and iT :T → U given by

[s]iS = (s, 1) for s ∈ VS
[t]iT = (t, 1) for t ∈ VT .

That is, U is the complexes S and T next to each other, where the
vertices of S get decorated with an 1 and the vertices of T get decorated
with a 2 so that they can be distinguished. I has two mappings into U ,
one from S and one from T .

Figure 28. The complex U and its relationship to S, T ,
and I.

In order to figure out which vertices of U actually get glued together,
we define a relation, R between VU and itself.

R: {(u, v) | ∃i. i ∈ VI ∧ [i](fS ; iS) = u ∧ [i](fT ; iT) = v}.
In particular, uRv whenever there is a vertex i of I such that i gets sent
to u by embedding into S and then U and i gets sent to v by embedding
into T and then U . That is, if uRv, the u and v are supposed to be
glued together. But suppose uRv and wRv. In that case, u gets glued

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 113

to v and so does w, so thus u and w are also glued together. For some
vertex u of U , we need a way to find the set of all vertices of U that
are glued to u. Thus, we define a function []R:VU → VUP. For each
u in VU , the value of this function is denoted as [u]R and is called the
equivalence class of u under R or the gluing class of u. This function is
defined such that for any vertex u of U ,

[u]R = {c ∈ VUP | u ∈ c ∧ ∀v, w. (vRw ⇒ v ∈ c⇔ w ∈ c)}
⋂

.

This intersection is guaranteed to exist because VU satisfies the required
conditions. Further, u ∈ [u]R and if vertices v and w are glued together
(vRw) and one is in the gluing class, then so is the other. If two
vertices get mapped to the same gluing class, then they are supposed
to be glued to each other. For example, [(5, 1)]R = {(5, 1), (2, 2), (2, 1)},
[(6, 2)]R = {(2, 1), (6, 2)}, and [(8, 1)]R = {(8, 1)}.

As a result, we can finally form the vertex set of our gluing. In
particular, we set

VG: {[u]R | u ∈ VU}.
That is, the vertices are the set of all gluing classes. Then, finally, we
define the cells of the complex.

CG: {{[u]R | u ∈ c} | c ∈ CU}.
That is to say, there is a cell in the gluing complex only if that cell “was
there before the gluing.” This yields our final glued complex.

Figure 29. The glued complex G and its relationship
to S, T , and I.

114 DAVIS DEATON

One should think of the green bits of the complex as “sticking out”
of the page. Although we have glued the square to the triangle, we have
not glued the rest of the paper around it. As a final note, there are
homomorphisms gS:S → G and gT :T → G given by [s]gS = [[s](fS ; iS)]
and [t]gT = [[t](fT ; iT)] which explain how S and T are mapped into
their gluing. Now, we present the definition of gluing.

Definition 5.5.3. Suppose that S, T , and I are complexes and that
fS: I → S and fT : I → T are homomorphisms. We define the gluing of
S and T along I as the complex [fS, fT]G with vertex set

VG: {[u]R | u ∈ VU}
where U is the such that

VU : {(s, 1) | s ∈ VS} ∪ {(t, 2) | t ∈ VT}
CU : {{(s, 1) | s ∈ c} | c ∈ CS} ∪ {{(t, 2) | t ∈ c} | c ∈ CT}

and []R:U → UP is the function defined for u ∈ VU as

[u]R = {c ∈ VUP | u ∈ c ∧ ∀v, w. (vRw ⇒ v ∈ c⇔ w ∈ c)}
⋂

where R is the relation on VU given by

R: {(u, v) | ∃i. i ∈ VI ∧ [i](fS ; iS) = u ∧ [i](fT ; iT) = v}
where iS:S → U and iT :T → U are homomorphisms for s ∈ VS and
t ∈ VT given by [s]iS = (s, 1) and [t]iT = (t, 1). We also define gluing
homomorphisms gS:S → G and gT :T → G given by [s]gS = [[s](fS ; iS)]
and [t]gT = [[t](fT ; iT)].

Like many of the other definitions in mathematics, this definition is
quite complicated, but it expresses a natural intuition of gluing com-
plexes together. This definition can, in fact, be simplified significantly
using more advanced forms of mathematics. This structure is actually
called a pushout which can be defined in terms of a coproduct and a
coequalizer, which it itself a special kind of quotient. Rather than present
is these notions, I have decided to directly present the definition of
gluing because gluing is the only notion needed to present the definition
of a compact contractible manifold. We will now present this notion
with an inductive construction.

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 115

Definition 5.5.4. An n dimensional compact contractible (combinato-
rial) manifold (CCCM) is defined as follows:

(1) ∆n is an n dimensional CCCM.
(2) The gluing of two nS dimensional CCCMs S and T along ho-

momorpisms fS ; ιS: I → S and fT ; ιT : I → T where fS: I → ∂S
and fT : I → ∂T are monomorphisms and I an n dimensional
CCCM is an nS dimensional CCCM.

At this point, we have completed the circle or whatever the idiom
is. This inductive definition is different from the ones defining Kn and
∆n. In those two, we were defining a sequences of complexes. In this
definition, we define a sequence of sets of complexes. That is, for each
n, we define a collection of the n dimensional CCCMs. Not only are
these defined in terms of n− 1 dimensional CCCMs but also in terms
of other n dimensional CCCMs. This is reminiscent of the definition of
a proposition, where propositions were defined in terms of themselves.
In fact, the inductive definition of a CCCM is both of these techniques
combined, since there was not a sort of proposition for each n.

Before we justify this definition, let us describe what it means. First,
since 0 is not nS for any n, only the first rule allows us to create
0 dimensional CCCMs. The definition says that ∆0 is the only 0
dimensional CCCM.

Figure 30. The only 0 dimensional CCCM.

Next, we know that ∆1 is a 1 dimensional CCCM.

Figure 31. The 1 dimensional CCCM ∆1 and its boundary.

The boundary of ∆1 is two points. This is important for the def-
inition of gluing. Let us glue ∆1 to itself. For this, we need a 0
dimensional CCCM, so we take ∆0, and homomorphisms fS: ∆0 → ∂∆1

and fT : ∆0 → ∂∆1. Here, we let fS pick out the vertex 1 and fT pick
out the vertex 0. Then, we can perform the gluing to get the complex

116 DAVIS DEATON

Figure 32. Two intervals ∆1 glued together into a larger interval.

Since the only 0 dimensional CCCM is the point, a 1 dimensional
CCCM is the segment ∆1 or a gluing of two segments at an end point.
That is, each 1 dimensional CCCM is isomorphic to an interval InS.

Now let us consider 2 dimensional CCCMs. The first rule means
that ∆2 is a 2 dimensional CCCM. The boundary of ∆2 is an empty
triangle. Using the second rule, we can glue two ∆2s along a ∆1 inside
their boundary.

Figure 33. Two triangles glued together to get a square.

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 117

We could glue another triangle onto this square.

Figure 34. A square and a triangle glued to get a pentagon.

We can also glue complexes along longer intervals.

Figure 35. A gluing along a longer interval.

These, and complexes like it, are the CCCMs.

118 DAVIS DEATON

We requires that the maps we glue along be monomorphisms (and
from lower dimensional CCCMs) to present getting “holes” in the
complex. For example, we do not allow the following complex

Figure 36. A gluing that does not result in a CCCM
since the maps from I are not monomorphisms.

which is “hollow”. Since there were no “filled in” three dimensional
cells in the complexes glued, the inside of this shape is hollow. This is
the origin of the term contractible. It refers to the fact that the complex
is just some “thickened” point rather than some exotic shape. The term
compact refers to the fact that the complex is finite, and so must be
relatively small. Each of these complexes are finite because the ∆n are
and a gluing of finite complexes is still finite. Although the definition
of a manifold was informal, this definition is fully formal. Since 1
dimensional CCCMs are intervals, and 2 dimensional CCCMs can only
be glued along such intervals of their boundary, we have effectively
guaranteed that our “pieces of paper” are only glued along their edges.

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 119

Finally, we will discuss 3 dimensional CCCMs. ∆3 is the simplest 3
dimensional CCCM. The other three dimensional CCCMs are gluings
of such complexes along 2 dimensional CCCMs. For example, we may
glue a tetrahedron to a square pyramid along a triangular face.

Figure 37. A gluing of 3 dimensional CCCMs.

This process repeats for higher dimensional CCCMs, but those are not
as simple to visualize.

120 DAVIS DEATON

Let us now show that this definition is valid. This inductive con-
struction is not a simple application of the recursion theorem, but we
will explain how to formalize it here. Let Mn denote the set of all n
dimensional CCCMs.

First, it is easy to show that the set of 0 dimensional CCCMs are
specified: it is the set M0: {∆0}. Now, suppose that Mn has been
well-defined. Let us use this to build MnS. This is itself an inductive
construction, because it depends on itself. Thus, we will build MnS in
stages, which we will denote as Mk

nS for a natural number k. First, let
M0

nS: {∆nS}. Then, define a function F such that [n,M]F is the set of
all gluings of of complexes in M by monomorphisms from complexes
in Mn into their boundaries, as described in the definition of CCCMs,
unioned with M . These sets are all guaranteed to exists due to the
existence of function sets, specification, and replacement. Then, Mk

nS is
defined by the recursion theorem such that M0

nS is the set containing
the simplex and MkS

nS is the set of complexes in Mk
nS as well as gluings

of such complexes by monomorphic boundary maps from Mn. In that
sense, Mk

nS is a sequence of stages of gluings, where at each step more
and more complicated gluings are allowed. The complexes at stage k are
those complexes from the previous stages and gluings of the complexes
from the previous stages. Then, the set MnS = {Mk

nS | k ∈ N}
⋃

which
exists by the axioms of replacement and union. That is, MnS is the set
of complexes created at any stage Mk

nS.
Importantly, this has created a function G which takes a set of n

dimensional complexes and makes a set of nS dimensional complexes.
In particular, let [n,M]G be the set defined above with M used as
the set of n dimensional complexes. Then, we can use the recursion
theorem again to get a function Mn such that M0 = {∆0} and MnS

is the set containing ∆nS and all gluings from the complexes in Mn.
Therefore, this definition uniquely determines the set of n dimensional
complexes for each n. Here, we had to use the recursion theorem twice,
because Mn was defined both in terms of itself and in terms of the lower
dimensional complexes. This reveals the true power of the recursion
theorem: Even though the recursion theorem is “one dimensional” (the
natural numbers are in a “line”), we can use the recursion theorem
multiple times to get structures which are “two dimensional” or even
structures with higher dimension.

Although we have defined the CCCMs, we have not described what
they can be used for. This is, for the most part, out of the scope of this
thesis. The purpose of this thesis was to show how complex geometric
structures can be defined using induction, and we have now completed
this goal. However, these complexes were not invented for no reason.

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 121

As far as I am aware, I am the one who invented this definition of
CCCMs. The terms compact and contractible are terms which originate
from topology. The “true” definition of a CCCM is a complex that,
when recognized as a topological space, is topologically a compact and
contractible manifold. However, topology is hard. Rather than using
topology to discuss these cell complexes, which are discrete, using the
continuous methods of topology, this inductive definition allows CCCMs
to be described using only discrete methods (in “only” 100 pages or so).

CCCMs are the building block for a theory of homotopy of graphs
that I am developing. Homotopy theory, to an extent, studies holes in
a shape. Truly, it studies the failure of certain shapes embedded inside
other shapes to be contracted. For example, if a circle is drawn on a
piece of paper, you could imagine shrinking the circle until it becomes
a point, having it remain on the paper the entire time.

Figure 38. A circle can be “contracted” to a point if it
is embedded in a piece of paper.

However, if a circle is drawn around the loop of a surface of a doughnut,
it cannot be shrunk until it becomes a point without the circle breaking
or leaving the surface of the doughnut. This can actually be done in
two different ways. None of the following circles can be transformed
into each other without tearing them or pulling them off the surface of
the doughnut (surface meaning that you cannot pull the loops through
the inside of the doughnut).

Figure 39. These circles, embedded on the surface of a
doughnut, cannot be transformed into each other.

122 DAVIS DEATON

However these two, which are both looped around the inside of the
doughnut, can be transformed into each other.

Figure 40. These circles, both running through the
inner loop of a doughnut, can be transformed into each
other.

This difference between circles embedded on the plane and circles
embedded on the doughnut indicates an important difference between
the doughnuts and the plane: doughnuts have a hole (actually, three
holes mathematically speaking). The idea of CCCMs is that all maps
into them are contractible. This is why we forbid any gluings which
could allow holes.

My goal is to develop a homotopy theory of graphs that is similar to
the homotopy of topological spaces in terms of algebraic power. That is,
it should describe the “holes” in a graph. I believe this is possible, using
CCCMs as the fundamental building blocks. By using induction for
my definitions, I am able to produce compact and elegant descriptions
of the necessary components. Importantly, these definitions can also
be understood by computers, enabling me to use digital tools to help
explore my theories.

5.6. Recommended Readings. For a basic description of relations
and graphs, I recommend Epp’s textbook[4] on discrete mathematics.
For a book focused on graphs, I recommend Chartrand[5] from where I
originally learned the subject. For a discussion of simplicial complexes,
I recommend Gallier’s textbook[7] on compact surfaces. This describes
complexes from a topological viewpoint, so it will require many topo-
logical preliminaries. For those, you should see a topology textbook,
but I do not have a particular recommendation.

Finally, I will cite the graph theory papers [6] and [3] which inspired
my work on graph homotopy. These papers are not intended for the
non-mathematician, but they are very good. I would recommend them
to those who have studied the preliminary materials.

INDUCTIVE CONSTRUCTIONS IN LOGIC AND GRAPH THEORY 123

6. Summary

Let us recall what we have accomplished in this thesis. First, we
described what it looks like to read mathematics. Then, we used
induction to define the language of logic, the semantics of logic, and
the language of formal proofs. Once we had logic, we discussed the
axioms of set theory, using induction of propositions to prove theorems
like the substitution theorem, and showing how induction arises within
set theory using the natural numbers. With the language of set theory,
we discussed geometry. We showed how the various types of sets in
set theory can be used to codify relationships and shapes. Finally, we
showed how induction can be used to define certain shapes, including the
particularly complicated structure of compact contractible combinatorial
manifolds.

Induction is one of the most powerful tools in all of mathematics.
Not only does it appear in these topics, but also in effectively every
other area of mathematics. Although we have not truly used induction
to its full potential, which is proving complicated results with ease, we
shown have how it can be used to create complicated structures. If you
are interested in more uses of mathematical induction, I hope that you
seek out content on constructive mathematics, where it has the highest
importance.

References

[1] Samuel R. Buss, An introduction to proof theory, Elsiver Science B.V., 1998.
[2] Keith Devlin, Introduction to mathematical thinking, Keith Devlin, 2012.
[3] Anton Dochtermann, Hom complexes and homotopy in the category of graphs,

Electronic Notes in Discrete Mathematics 31 (2008), 131 –136. The International
Conference on Topological and Geometric Graph Theory.

[4] Susanna S. Epp, Discrete mathematics with applications, fourth edition,
Brooks/Cole Cengage Learning, 2011.

[5] Ping Zhang Gary Chartrand, A first course in graph theory, Dover Publications,
2010.

[6] Alexander Grigor’yan, Yong Lin, Yuri Muranov, and Shing-Tung Yau, Homotopy
theory for digraphs, Pure and Applied Mathematics Quarterly 10 (201407).

[7] Dianna Xu Jean Gallier, A guide to the classification theorem of compact
surfaces, Springer, 2013.

[8] Thomas Jech, Set theory, Springer, 2003.
[9] P.D. Magnus, An introduction to formal logic, Fecundity, 2012.

[10] Grigori Mints, A short introduction to intuitionistic logic, Springer, 2000.
[11] Adam Brooks Webber, Formal language: A practical introduction, Franklin,

Beedle & Associates Incorporated, 2011.

Belmont University, Nashville, TN 37212
Email address: davis.deaton@pop.belmont.edu

	Inductive Constructions In Logic And Graph Theory
	Recommended Citation

	1. Introduction
	1.1. What Is This Document?
	1.2. What is Mathematics?
	1.3. What is Induction?
	1.4. Summary of the Material Presented

	2. Reading Mathematics
	2.1. Formal Languages
	2.2. Variables and Substitution
	2.3. Sequences and the Natural Numbers
	2.4. Syntax vs. Semantics
	2.5. Grouping Symbols and Order of Operations
	2.6. Free Constructions
	2.7. Recommended Reading

	3. Predicate Logic
	3.1. Propositions
	3.2. Truth Values
	3.3. Shorthand
	3.4. Formal Proofs
	3.5. Recommended Reading

	4. Set Theory
	4.1. Equality
	4.2. Single-Valued Functions
	4.3. Pairs and Unions
	4.4. Subsets and Set Builder Notation
	4.5. Infinity and Induction
	4.6. Pairs and Small Propositions
	4.7. Multi-valued Functions
	4.8. Internal Functions and Finiteness
	4.9. Choice and the Law of the Excluded Middle
	4.10. Summary
	4.11. Recommended Reading

	5. Graph Theory and Complexes
	5.1. Relations
	5.2. Graphs and Complexes
	5.3. Homomorphisms
	5.4. Inductive Definitions
	5.5. Combinatorial Manifolds
	5.6. Recommended Readings

	6. Summary
	References

