8,676 research outputs found

    Coordinate Representation of the One-Spinon One-Holon Wavefunction and Spinon-Holon Interaction

    Full text link
    By deriving and studying the coordinate representation for the one-spinon one-holon wavefunction we show that spinons and holons in the supersymmetric t−Jt - J model with 1/r21/r^2 interaction attract each other. The interaction causes a probability enhancement in the one-spinon one-holon wavefunction at short separation between the particles. We express the hole spectral function for a finite lattice in terms of the probability enhancement, given by the one-spinon one-holon wavefunction at zero separation. In the thermodynamic limit, the spinon-holon attraction turns into the square-root divergence in the hole spectral function.Comment: 20 pages, 3 .eps figure

    Gauge invariant dressed holon and spinon in doped cuprates

    Full text link
    We develop a partial charge-spin separation fermion-spin theory implemented the gauge invariant dressed holon and spinon. In this novel approach, the physical electron is decoupled as the gauge invariant dressed holon and spinon, with the dressed holon behaviors like a spinful fermion, and represents the charge degree of freedom together with the phase part of the spin degree of freedom, while the dressed spinon is a hard-core boson, and represents the amplitude part of the spin degree of freedom, then the electron single occupancy local constraint is satisfied. Within this approach, the charge transport and spin response of the underdoped cuprates is studied. It is shown that the charge transport is mainly governed by the scattering from the dressed holons due to the dressed spinon fluctuation, while the scattering from the dressed spinons due to the dressed holon fluctuation dominates the spin response.Comment: 8 pages, Revtex, three figures are include

    Exact two-holon wave functions in the Kuramoto-Yokoyama model

    Full text link
    We construct the explicit two-holon eigenstates of the SU(2) Kuramoto-Yokoyama model at the level of explicit wave functions. We derive the exact energies and obtain the individual holon momenta, which are quantized according to the half-Fermi statistics of the holons.Comment: 16 pages revte

    Combination Rules, Charge Symmetry, and Hall Effect in Cuprates

    Full text link
    The rule relating the observed Hall coefficient to the spin and charge responses of the uniform doped Mott insulator is derived. It is essential to include the contribution of holon and spinon three-current correlations to the effective action of the gauge field. In the vicinity of the Mott insulating point the Hall coefficient is holon dominated and weakly temperature dependent. In the vicinity of a point of charge conjugation symmetry the holon contribution to the observed Hall coefficient is small: the Hall coefficient follows the temperature dependence of the diamagnetic susceptibility with a sign determined by the Fermi surface shape. NOTE: document prepared using REVTEX. (3 Figs, not included, available on request from: [email protected])Comment: 8 page

    A gauge approach to the "pseudogap" phenomenology of the spectral weight in high Tc cuprates

    Full text link
    We assume the t-t'-J model to describe the CuO_2 planes of hole-doped cuprates and we adapt the spin-charge gauge approach, previously developed for the t-J model, to describe the holes in terms of a spinless fermion carrying the charge (holon) and a neutral boson carrying spin 1/2 (spinon), coupled by a slave-particle gauge field. In this framework we consider the effects of a finite density of incoherent holon pairs in the normal state. Below a crossover temperature, identified as the experimental "upper pseudogap", the scattering of the "quanta" of the phase of the holon-pair field against holons reproduces the phenomenology of Fermi arcs coexisting with gap in the antinodal region. We thus obtain a microscopic derivation of the main features of the hole spectra due to pseudogap. This result is obtained through a holon Green function which follows naturally from the formalism and analytically interpolates between a Fermi liquid-like and a d-wave superconductor behavior as the coherence length of the holon pair order parameter increases. By inserting the gauge coupling with the spinon we construct explicitly the hole Green function and calculate its spectral weight and the corresponding density of states. So we prove that the formation of holon pairs induces a depletion of states on the hole Fermi surface. We compare our results with ARPES and tunneling experimental data. In our approach the hole preserves a finite Fermi surface until the superconducting transition, where it reduces to four nodes. Therefore we propose that the gap seen in the normal phase of cuprates is due to the thermal broadening of the SC-like peaks masking the Fermi-liquid peak. The Fermi arcs then correspond to the region of the Fermi surface where the Fermi-liquid peak is unmasked.Comment: 10 figures, comments and references added, 2 figures change
    • …
    corecore