670 research outputs found

    Holographic Embeddings of Knowledge Graphs

    Get PDF
    Learning embeddings of entities and relations is an efficient and versatile method to perform machine learning on relational data such as knowledge graphs. In this work, we propose holographic embeddings (HolE) to learn compositional vector space representations of entire knowledge graphs. The proposed method is related to holographic models of associative memory in that it employs circular correlation to create compositional representations. By using correlation as the compositional operator HolE can capture rich interactions but simultaneously remains efficient to compute, easy to train, and scalable to very large datasets. In extensive experiments we show that holographic embeddings are able to outperform state-of-the-art methods for link prediction in knowledge graphs and relational learning benchmark datasets.Comment: To appear in AAAI-1

    Learning to Rank Question Answer Pairs with Holographic Dual LSTM Architecture

    Full text link
    We describe a new deep learning architecture for learning to rank question answer pairs. Our approach extends the long short-term memory (LSTM) network with holographic composition to model the relationship between question and answer representations. As opposed to the neural tensor layer that has been adopted recently, the holographic composition provides the benefits of scalable and rich representational learning approach without incurring huge parameter costs. Overall, we present Holographic Dual LSTM (HD-LSTM), a unified architecture for both deep sentence modeling and semantic matching. Essentially, our model is trained end-to-end whereby the parameters of the LSTM are optimized in a way that best explains the correlation between question and answer representations. In addition, our proposed deep learning architecture requires no extensive feature engineering. Via extensive experiments, we show that HD-LSTM outperforms many other neural architectures on two popular benchmark QA datasets. Empirical studies confirm the effectiveness of holographic composition over the neural tensor layer.Comment: SIGIR 2017 Full Pape

    New Embedded Representations and Evaluation Protocols for Inferring Transitive Relations

    Full text link
    Beyond word embeddings, continuous representations of knowledge graph (KG) components, such as entities, types and relations, are widely used for entity mention disambiguation, relation inference and deep question answering. Great strides have been made in modeling general, asymmetric or antisymmetric KG relations using Gaussian, holographic, and complex embeddings. None of these directly enforce transitivity inherent in the is-instance-of and is-subtype-of relations. A recent proposal, called order embedding (OE), demands that the vector representing a subtype elementwise dominates the vector representing a supertype. However, the manner in which such constraints are asserted and evaluated have some limitations. In this short research note, we make three contributions specific to representing and inferring transitive relations. First, we propose and justify a significant improvement to the OE loss objective. Second, we propose a new representation of types as hyper-rectangular regions, that generalize and improve on OE. Third, we show that some current protocols to evaluate transitive relation inference can be misleading, and offer a sound alternative. Rather than use black-box deep learning modules off-the-shelf, we develop our training networks using elementary geometric considerations.Comment: Accepted at SIGIR 201

    Complex Embeddings for Simple Link Prediction

    Get PDF
    In statistical relational learning, the link prediction problem is key to automatically understand the structure of large knowledge bases. As in previous studies, we propose to solve this problem through latent factorization. However, here we make use of complex valued embeddings. The composition of complex embeddings can handle a large variety of binary relations, among them symmetric and antisymmetric relations. Compared to state-of-the-art models such as Neural Tensor Network and Holographic Embeddings, our approach based on complex embeddings is arguably simpler, as it only uses the Hermitian dot product, the complex counterpart of the standard dot product between real vectors. Our approach is scalable to large datasets as it remains linear in both space and time, while consistently outperforming alternative approaches on standard link prediction benchmarks.Comment: 10+2 pages, accepted at ICML 201
    • …
    corecore