337 research outputs found

    Genetic And Evolutionary Biometrics:Multiobjective, Multimodal, Feature Selection/Weighting For Tightly Coupled Periocular And Face Recognition

    Get PDF
    The Genetic & Evolutionary Computation (GEC) research community has seen the emergence of a new subarea, referred to as Genetic & Evolutionary Biometrics (GEB), as GECs have been applied to solve a variety of biometric problems. In this dissertation, we present three new GEB techniques for multibiometric recognition: Genetic & Evolutionary Feature Selection (GEFeS), Weighting (GEFeW), and Weighting/Selection (GEFeWS). Instead of selecting the most salient individual features, these techniques evolve subsets of the most salient combinations of features and/or weight features based on their discriminative ability in an effort to increase accuracy while decreasing the overall number of features needed for recognition. We also incorporate cross validation into our best performing technique in an attempt to evolve feature masks (FMs) that also generalize well to unseen subjects and we search the value preference space in an attempt to analyze its impact in respect to optimization and generalization. Our results show that by fusing the periocular biometric with the face, we can achieve higher recognition accuracies than using the two biometric modalities independently. Our results also show that our GEB techniques are able to achieve higher recognition rates than the baseline methods, while using significantly fewer features. In addition, by incorporating machine learning, we were able to create FMs that also generalize well to unseen subjects and use less than 50% of the extracted features. Finally, by searching the value preference space, we were able to determine which weights were most effective in terms of optimization and generalization

    Biometrics Sensor Fusion

    Get PDF

    Adaptive multi-classifier systems for face re-identification applications

    Get PDF
    In video surveillance, decision support systems rely more and more on face recognition (FR) to rapidly determine if facial regions captured over a network of cameras correspond to individuals of interest. Systems for FR in video surveillance are applied in a range of scenarios, for instance in watchlist screening, face re-identification, and search and retrieval. The focus of this Thesis is video-to-video FR, as found in face re-identification applications, where facial models are designed on reference data, and update is archived on operational captures from video streams. Several challenges emerge from the task of recognizing individuals of interest from faces captured with video cameras. Most notably, it is often assumed that the facial appearance of target individuals do not change over time, and the proportions of faces captured for target and non-target individuals are balanced, known a priori and remain fixed. However, faces captured during operations vary due to several factors, including illumination, blur, resolution, pose expression, and camera interoperability. In addition, facial models used matching are commonly not representative since they are designed a priori, with a limited amount of reference samples that are collected and labeled at a high cost. Finally, the proportions of target and non-target individuals continuously change during operations. In literature, adaptive multiple classifier systems (MCSs) have been successfully applied to video-to-video FR, where the facial model for each target individual is designed using an ensemble of 2-class classifiers (trained using target vs. non-target reference samples). Recent approaches employ ensembles of 2-class Fuzzy ARTMAP classifiers, with a DPSO strategy to generate a pool of classifiers with optimized hyperparameters, and Boolean combination to merge their responses in the ROC space. Besides, the skew-sensitive ensembles were recently proposed to adapt the fusion function of an ensemble according to class imbalance measured on operational data. These active approaches estimate target vs. non-target proportions periodically during operations distance, and the fusion of classifier ensembles are adapted to such imbalance. Finally, face tracking can be used to regroup the system responses linked to a facial trajectory (facial captures from a single person in the scene) for robust spatio-temporal recognition, and to update facial models over time using operational data. In this Thesis, new techniques are proposed to adapt the facial models for individuals enrolled to a video-to-video FR system. Trajectory-based self-updating is proposed to update the system, considering gradual and abrupt changes in the classification environment. Then, skew-sensitive ensembles are proposed to adapt the system to the operational imbalance. In Chapter 2, an adaptive framework is proposed for partially-supervised learning of facial models over time based on facial trajectories. During operations, information from a face tracker and individual-specific ensembles is integrated for robust spatio-temporal recognition and for self-update of facial models. The tracker defines a facial trajectory for each individual in video. Recognition of a target individual is done if the positive predictions accumulated along a trajectory surpass a detection threshold for an ensemble. If the accumulated positive predictions surpass a higher update threshold, then all target face samples from the trajectory are combined with non-target samples (selected from the cohort and universal models) to update the corresponding facial model. A learn-and-combine strategy is employed to avoid knowledge corruption during self-update of ensembles. In addition, a memory management strategy based on Kullback-Leibler divergence is proposed to rank and select the most relevant target and non-target reference samples to be stored in memory as the ensembles evolves. The proposed system was validated with synthetic data and real videos from Face in Action dataset, emulating a passport checking scenario. Initially, enrollment trajectories were used for supervised learning of ensembles, and videos from three capture sessions were presented to the system for FR and self-update. Transaction-level analysis shows that the proposed approach outperforms baseline systems that do not adapt to new trajectories, and provides comparable performance to ideal systems that adapt to all relevant target trajectories, through supervised learning. Subject-level analysis reveals the existence of individuals for which self-updated ensembles provide a considerable benefit. Trajectory-level analysis indicates that the proposed system allows for robust spatio-temporal video-to-video FR. In Chapter 3, an extension and a particular implementation of the ensemble-based system for spatio-temporal FR is proposed, and is characterized in scenarios with gradual and abrupt changes in the classification environment. Transaction-level results show that the proposed system allows to increase AUC accuracy by about 3% in scenarios with abrupt changes, and by about 5% in scenarios with gradual changes. Subject-based analysis reveals the difficulties of FR with different poses, affecting more significantly the lamb- and goat-like individuals. Compared to reference spatio-temporal fusion approaches, the proposed accumulation scheme produces the highest discrimination. In Chapter 4, adaptive skew-sensitive ensembles are proposed to combine classifiers trained by selecting data with varying levels of imbalance and complexity, to sustain a high level the performance for video-to-video FR. During operations, the level of imbalance is periodically estimated from the input trajectories using the HDx quantification method, and pre-computed histogram representations of imbalanced data distributions. Ensemble scores are accumulated of trajectories for robust skew-sensitive spatio-temporal recognition. Results on synthetic data show that adapting the fusion function with the proposed approach can significantly improve performance. Results on real data show that the proposed method can outperform reference techniques in imbalanced video surveillance environments

    Facial Expression Recognition Based on Deep Learning Convolution Neural Network: A Review

    Get PDF
    Facial emotional processing is one of the most important activities in effective calculations, engagement with people and computers, machine vision, video game testing, and consumer research. Facial expressions are a form of nonverbal communication, as they reveal a person's inner feelings and emotions. Extensive attention to Facial Expression Recognition (FER) has recently been received as facial expressions are considered. As the fastest communication medium of any kind of information. Facial expression recognition gives a better understanding of a person's thoughts or views and analyzes them with the currently trending deep learning methods. Accuracy rate sharply compared to traditional state-of-the-art systems. This article provides a brief overview of the different FER fields of application and publicly accessible databases used in FER and studies the latest and current reviews in FER using Convolution Neural Network (CNN) algorithms. Finally, it is observed that everyone reached good results, especially in terms of accuracy, with different rates, and using different data sets, which impacts the results

    A contribution for single and multiple faces recognition using feature-based approaches

    Get PDF
    Among biometric recognition systems, face biometrics plays an important role in research activities and security applications since face images can be acquired without any knowledge of individuals. Nowadays a huge amount of digital images and video sequences have been acquired mainly from uncontrolled conditions, frequently including noise, blur, occlusion and variation on scale and illumination. Because of these issues, face recognition (FR) is still an active research area and becomes a complex problem and a challenging task. In this context, the motivation comes from the fact that recognition of faces in digital images with complex background and databases of face images have become one of the successful applications of Computer Vision. Hence, the main goal of this work is to recognize one or more faces from still images with multiple faces and from a database of single faces obtained under different conditions. To work with multiple face images under varying conditions, a semi-supervised approach proposed based on the invariant and discriminative power of local features. The extraction of local features is done using Speeded-Up Robust Features (SURF). The search for regions from which optimal features can be extracted is fulfilled by an improved ABC algorithm. To fully exploit the proposed approach, an extensive experimental analysis was performed. Results show that this approach is robust and efficient for face recognition applications except for faces with non-uniform illumination. In the literature, a significant number of single FR researches are based on extraction of only one feature and machine learning approaches. Besides, existing feature extraction approaches broadly use either global or local features. To obtain relevant and complementary features from face images, a face recognition methodology should consider heterogeneous features and semi-global features. Therefore, a novel hierarchical semi-supervised FR approach is proposed based on extraction of global, semi-global and local features. Global and semi-global features are extracted using Color Angles (CA) and edge histogram descriptors (EHD) meanwhile only local features are extracted using SURF. An extensive experimental analysis using the three feature extraction methods was done first individually followed by a three-stage hierarchical scheme using the face images obtained under two different lighting conditions with facial expression and slight scale variation. Furthermore, the performance of the approach was also analyzed using global, semi-global and local features combinations for CA and EHD. The proposed approach achieves high recognition rates considering all image conditions tested in this work. In addition to this, the results emphasize the influence of local and semi-global features in the recognition performance. In both, single face and multiple faces approaches, the main achievement is the high performance obtained only from the discriminative capacity of extracted features without any training schemes.Entre os sistemas de reconhecimento biométrico, a biometria da face exerce um papel importante nas atividades de pesquisa e nas aplicações de segurança, pois a face pode ser obtida sem conhecimento prévio de um indivíduo. Atualmente, uma grande quantidade de imagens digitais e seqüências de vídeo têm sido adquiridas principalmente sob condições não-controladas, freqüentemente com ruído, borramento, oclusão e variação de escala e iluminação. Por esses problemas, o reconhecimento facial (RF) é ainda considerado como uma área de pesquisa ativa e uma tarefa desafiadora. A motivação vem do fato que o reconhecimento de faces nas imagens com fundo complexo e em base de imagens faciais tem sido uma aplicação de sucesso. Portanto, o principal foco deste trabalho é reconhecer uma ou mais faces em imagens estáticas contendo diversos indivíduos e um individuo (face) em uma base de imagens com faces únicas obtidas sob condições diferentes. Para trabalhar com faces múltiplas, uma abordagem semi-supervisionada foi proposta baseada em características locais invariantes e discriminativas. A extração de características (EC) locais é feita utilizando-se do algoritmo Speeded-Up Robust Features (SURF). A busca por regiões nas quais as características ótimas podem ser extraídas é atendida através do algoritmo ABC. Os resultados obtidos mostram que esta abordagem é robusta e eficiente para aplicações de RF exceto para faces com iluminação não-uniforme. Muitos trabalhos de RF são baseados somente na extração de uma característica e nas abordagens de aprendizagem de máquina. Além disso, as abordagens existentes de EC usam características globais e/ou locais. Para obter características relevantes e complementares, a metodologia de RF deve considerar também as características de diferentes tipos e semi-globais. Portanto, a abordagem hierárquica de RF é proposta baseada na EC como globais, semi-globais e locais. As globais e semi-globais são extraídas utilizando-se de Color Angles (CA) e Edge Histogram Descriptors (EHD) enquanto somente características locais são extraídas utilizando-se do SURF. Uma ampla análise experimental foi feita utilizando os três métodos individualmente, seguido por um esquema hierárquico de três - estágios usando imagens faciais obtidas sob duas condições diferentes de iluminação com expressão facial e uma variação de escala leve. Além disso, para CA e EHD, o desempenho da abordagem foi também analisado combinando-se características globais, semi-globais e locais. A abordagem proposta alcança uma taxa de reconhecimento alta com as imagens de todas as condições testadas neste trabalho. Os resultados enfatizam a influência das características locais e semi-globais no desempenho do reconhecimento. Em ambas as abordagens, tanto nas faces únicas quanto nas faces múltiplas, a conquista principal é o alto desempenho obtido somente com a capacidade discriminativa de características sem nenhum esquema de treinamento

    A Systematic Literature Review on Task Allocation and Performance Management Techniques in Cloud Data Center

    Full text link
    As cloud computing usage grows, cloud data centers play an increasingly important role. To maximize resource utilization, ensure service quality, and enhance system performance, it is crucial to allocate tasks and manage performance effectively. The purpose of this study is to provide an extensive analysis of task allocation and performance management techniques employed in cloud data centers. The aim is to systematically categorize and organize previous research by identifying the cloud computing methodologies, categories, and gaps. A literature review was conducted, which included the analysis of 463 task allocations and 480 performance management papers. The review revealed three task allocation research topics and seven performance management methods. Task allocation research areas are resource allocation, load-Balancing, and scheduling. Performance management includes monitoring and control, power and energy management, resource utilization optimization, quality of service management, fault management, virtual machine management, and network management. The study proposes new techniques to enhance cloud computing work allocation and performance management. Short-comings in each approach can guide future research. The research's findings on cloud data center task allocation and performance management can assist academics, practitioners, and cloud service providers in optimizing their systems for dependability, cost-effectiveness, and scalability. Innovative methodologies can steer future research to fill gaps in the literature

    Learning Multimodal Structures in Computer Vision

    Get PDF
    A phenomenon or event can be received from various kinds of detectors or under different conditions. Each such acquisition framework is a modality of the phenomenon. Due to the relation between the modalities of multimodal phenomena, a single modality cannot fully describe the event of interest. Since several modalities report on the same event introduces new challenges comparing to the case of exploiting each modality separately. We are interested in designing new algorithmic tools to apply sensor fusion techniques in the particular signal representation of sparse coding which is a favorite methodology in signal processing, machine learning and statistics to represent data. This coding scheme is based on a machine learning technique and has been demonstrated to be capable of representing many modalities like natural images. We will consider situations where we are not only interested in support of the model to be sparse, but also to reflect a-priorily known knowledge about the application in hand. Our goal is to extract a discriminative representation of the multimodal data that leads to easily finding its essential characteristics in the subsequent analysis step, e.g., regression and classification. To be more precise, sparse coding is about representing signals as linear combinations of a small number of bases from a dictionary. The idea is to learn a dictionary that encodes intrinsic properties of the multimodal data in a decomposition coefficient vector that is favorable towards the maximal discriminatory power. We carefully design a multimodal representation framework to learn discriminative feature representations by fully exploiting, the modality-shared which is the information shared by various modalities, and modality-specific which is the information content of each modality individually. Plus, it automatically learns the weights for various feature components in a data-driven scheme. In other words, the physical interpretation of our learning framework is to fully exploit the correlated characteristics of the available modalities, while at the same time leverage the modality-specific character of each modality and change their corresponding weights for different parts of the feature in recognition
    corecore