3 research outputs found

    Coordination of drones at scale: Decentralized energy-aware swarm intelligence for spatio-temporal sensing

    Get PDF
    Smart City applications, such as traffic monitoring and disaster response, often use swarms of intelligent and cooperative drones to efficiently collect sensor data over different areas of interest and time spans. However, when the required sensing becomes spatio-temporally large and varying, a collective arrangement of sensing tasks to a large number of battery-restricted and distributed drones is challenging. To address this problem, this paper introduces a scalable and energy-aware model for planning and coordination of spatio-temporal sensing. The coordination model is built upon a decentralized multi-agent collective learning algorithm (EPOS) to ensure scalability, resilience, and flexibility that existing approaches lack of. Experimental results illustrate the outstanding performance of the proposed method compared to state-of-the-art methods. Analytical results contribute a deeper understanding of how coordinated mobility of drones influences sensing performance. This novel coordination solution is applied to traffic monitoring using real-world data to demonstrate a 46.45% more accurate and 2.88% more efficient detection of vehicles as the number of drones become a scarce resource

    Holarchic structures for decentralized deep learning: a performance analysis

    No full text
    Structure plays a key role in learning performance. In centralized computational systems, hyperparameter optimization and regularization techniques such as dropout are computational means to enhance learning performance by adjusting the deep hierarchical structure. However, in decentralized deep learning by the Internet of Things, the structure is an actual network of autonomous interconnected devices such as smart phones that interact via complex network protocols. Self-adaptation of the learning structure is a challenge. Uncertainties such as network latency, node and link failures or even bottlenecks by limited processing capacity and energy availability can significantly downgrade learning performance. Network self-organization and self-management is complex, while it requires additional computational and network resources that hinder the feasibility of decentralized deep learning. In contrast, this paper introduces a self-adaptive learning approach based on holarchic learning structures for exploring, mitigating and boosting learning performance in distributed environments with uncertainties. A large-scale performance analysis with 864,000 experiments fed with synthetic and real-world data from smart grid and smart city pilot projects confirm the cost-effectiveness of holarchic structures for decentralized deep learning
    corecore