12 research outputs found

    Pseudorandom Bits for Oblivious Branching Programs

    Get PDF
    We construct a pseudorandom generator that fools known-order read-k oblivious branching programs and, more generally, any linear length oblivious branching program. For polynomial width branching programs, the seed lengths in our constructions are O(n^(1−1/2^(k−1))) (for the read-k case) and O(n/log log n) (for the linear length case). Previously, the best construction for these models required seed length (1 − Ω(1))n

    Algebra in Computational Complexity

    Get PDF
    At its core, much of Computational Complexity is concerned with combinatorial objects and structures. But it has often proven true that the best way to prove things about these combinatorial objects is by establishing a connection to a more well-behaved algebraic setting. Indeed, many of the deepest and most powerful results in Computational Complexity rely on algebraic proof techniques. The Razborov-Smolensky polynomial-approximation method for proving constant-depth circuit lower bounds, the PCP characterization of NP, and the Agrawal-Kayal-Saxena polynomial-time primality test are some of the most prominent examples. The algebraic theme continues in some of the most exciting recent progress in computational complexity. There have been significant recent advances in algebraic circuit lower bounds, and the so-called "chasm at depth 4" suggests that the restricted models now being considered are not so far from ones that would lead to a general result. There have been similar successes concerning the related problems of polynomial identity testing and circuit reconstruction in the algebraic model, and these are tied to central questions regarding the power of randomness in computation. Representation theory has emerged as an important tool in three separate lines of work: the "Geometric Complexity Theory" approach to P vs. NP and circuit lower bounds, the effort to resolve the complexity of matrix multiplication, and a framework for constructing locally testable codes. Coding theory has seen several algebraic innovations in recent years, including multiplicity codes, and new lower bounds. This seminar brought together researchers who are using a diverse array of algebraic methods in a variety of settings. It plays an important role in educating a diverse community about the latest new techniques, spurring further progress

    Deterministic Identity Testing for Sum of Read-Once Oblivious Arithmetic Branching Programs

    Get PDF
    A read-once oblivious arithmetic branching program (ROABP) is an arithmetic branching program (ABP) where each variable occurs in at most one layer. We give the first polynomial time whitebox identity test for a polynomial computed by a sum of constantly many ROABPs. We also give a corresponding blackbox algorithm with quasi-polynomial time complexity nO(logn)n^{O(\log n)}. In both the cases, our time complexity is double exponential in the number of ROABPs. ROABPs are a generalization of set-multilinear depth-33 circuits. The prior results for the sum of constantly many set-multilinear depth-33 circuits were only slightly better than brute-force, i.e. exponential-time. Our techniques are a new interplay of three concepts for ROABP: low evaluation dimension, basis isolating weight assignment and low-support rank concentration. We relate basis isolation to rank concentration and extend it to a sum of two ROABPs using evaluation dimension (or partial derivatives).Comment: 22 pages, Computational Complexity Conference, 201

    Succinct Hitting Sets and Barriers to Proving Lower Bounds for Algebraic Circuits

    Get PDF
    We formalize a framework of algebraically natural lower bounds for algebraic circuits. Just as with the natural proofs notion of Razborov and Rudich (1997) for Boolean circuit lower bounds, our notion of algebraically natural lower bounds captures nearly all lower bound techniques known. However, unlike in the Boolean setting, there has been no concrete evidence demonstrating that this is a barrier to obtaining super-polynomial lower bounds for general algebraic circuits, as there is little understanding whether algebraic circuits are expressive enough to support “cryptography” secure against algebraic circuits. Following a similar result of Williams (2016) in the Boolean setting, we show that the existence of an algebraic natural proofs barrier is equivalent to the existence of succinct derandomization of the polynomial identity testing problem, that is, to the existence of a hitting set for the class of poly(N)-degree poly(N)-size circuits which consists of coefficient vectors of polynomials of polylog(N) degree with polylog(N)-size circuits. Further, we give an explicit universal construction showing that if such a succinct hitting set exists, then our universal construction suffices. Further, we assess the existing literature constructing hitting sets for restricted classes of algebraic circuits and observe that none of them are succinct as given. Yet, we show how to modify some of these constructions to obtain succinct hitting sets. This constitutes the first evidence supporting the existence of an algebraic natural proofs barrier. Our framework is similar to the Geometric Complexity Theory (GCT) program of Mulmuley and Sohoni (2001), except that here we emphasize constructiveness of the proofs while the GCT program emphasizes symmetry. Nevertheless, our succinct hitting sets have relevance to the GCT program as they imply lower bounds for the complexity of the defining equations of polynomials computed by small circuits. A conference version of this paper appeared in the Proceedings of the 49th Annual ACM Symposium on Theory of Computing (STOC 2017)

    Succinct Hitting Sets and Barriers to Proving Lower Bounds for Algebraic Circuits

    Get PDF
    We formalize a framework of algebraically natural lower bounds for algebraic circuits. Just as with the natural proofs notion of Razborov and Rudich (1997) for Boolean circuit lower bounds, our notion of algebraically natural lower bounds captures nearly all lower bound techniques known. However, unlike in the Boolean setting, there has been no concrete evidence demonstrating that this is a barrier to obtaining super-polynomial lower bounds for general algebraic circuits, as there is little understanding whether algebraic circuits are expressive enough to support “cryptography” secure against algebraic circuits. Following a similar result of Williams (2016) in the Boolean setting, we show that the existence of an algebraic natural proofs barrier is equivalent to the existence of succinct derandomization of the polynomial identity testing problem, that is, to the existence of a hitting set for the class of poly(N)-degree poly(N)-size circuits which consists of coefficient vectors of polynomials of polylog(N) degree with polylog(N)-size circuits. Further, we give an explicit universal construction showing that if such a succinct hitting set exists, then our universal construction suffices. Further, we assess the existing literature constructing hitting sets for restricted classes of algebraic circuits and observe that none of them are succinct as given. Yet, we show how to modify some of these constructions to obtain succinct hitting sets. This constitutes the first evidence supporting the existence of an algebraic natural proofs barrier. Our framework is similar to the Geometric Complexity Theory (GCT) program of Mulmuley and Sohoni (2001), except that here we emphasize constructiveness of the proofs while the GCT program emphasizes symmetry. Nevertheless, our succinct hitting sets have relevance to the GCT program as they imply lower bounds for the complexity of the defining equations of polynomials computed by small circuits. A conference version of this paper appeared in the Proceedings of the 49th Annual ACM Symposium on Theory of Computing (STOC 2017)
    corecore