639 research outputs found

    Entropy-driven cutoff phenomena

    Full text link
    In this paper we present, in the context of Diaconis' paradigm, a general method to detect the cutoff phenomenon. We use this method to prove cutoff in a variety of models, some already known and others not yet appeared in literature, including a chain which is non-reversible w.r.t. its stationary measure. All the given examples clearly indicate that a drift towards the opportune quantiles of the stationary measure could be held responsible for this phenomenon. In the case of birth- and-death chains this mechanism is fairly well understood; our work is an effort to generalize this picture to more general systems, such as systems having stationary measure spread over the whole state space or systems in which the study of the cutoff may not be reduced to a one-dimensional problem. In those situations the drift may be looked for by means of a suitable partitioning of the state space into classes; using a statistical mechanics language it is then possible to set up a kind of energy-entropy competition between the weight and the size of the classes. Under the lens of this partitioning one can focus the mentioned drift and prove cutoff with relative ease.Comment: 40 pages, 1 figur

    Universality of trap models in the ergodic time scale

    Full text link
    Consider a sequence of possibly random graphs GN=(VN,EN)G_N=(V_N, E_N), N1N\ge 1, whose vertices's have i.i.d. weights {WxN:xVN}\{W^N_x : x\in V_N\} with a distribution belonging to the basin of attraction of an α\alpha-stable law, 0<α<10<\alpha<1. Let XtNX^N_t, t0t \ge 0, be a continuous time simple random walk on GNG_N which waits a \emph{mean} WxNW^N_x exponential time at each vertex xx. Under considerably general hypotheses, we prove that in the ergodic time scale this trap model converges in an appropriate topology to a KK-process. We apply this result to a class of graphs which includes the hypercube, the dd-dimensional torus, d2d\ge 2, random dd-regular graphs and the largest component of super-critical Erd\"os-R\'enyi random graphs

    Random subcube intersection graphs I: cliques and covering

    Full text link
    We study random subcube intersection graphs, that is, graphs obtained by selecting a random collection of subcubes of a fixed hypercube QdQ_d to serve as the vertices of the graph, and setting an edge between a pair of subcubes if their intersection is non-empty. Our motivation for considering such graphs is to model `random compatibility' between vertices in a large network. For both of the models considered in this paper, we determine the thresholds for covering the underlying hypercube QdQ_d and for the appearance of s-cliques. In addition we pose some open problems.Comment: 38 pages, 1 figur

    Covering Partial Cubes with Zones

    Full text link
    A partial cube is a graph having an isometric embedding in a hypercube. Partial cubes are characterized by a natural equivalence relation on the edges, whose classes are called zones. The number of zones determines the minimal dimension of a hypercube in which the graph can be embedded. We consider the problem of covering the vertices of a partial cube with the minimum number of zones. The problem admits several special cases, among which are the problem of covering the cells of a line arrangement with a minimum number of lines, and the problem of finding a minimum-size fibre in a bipartite poset. For several such special cases, we give upper and lower bounds on the minimum size of a covering by zones. We also consider the computational complexity of those problems, and establish some hardness results

    Almost uniform sampling via quantum walks

    Get PDF
    Many classical randomized algorithms (e.g., approximation algorithms for #P-complete problems) utilize the following random walk algorithm for {\em almost uniform sampling} from a state space SS of cardinality NN: run a symmetric ergodic Markov chain PP on SS for long enough to obtain a random state from within ϵ\epsilon total variation distance of the uniform distribution over SS. The running time of this algorithm, the so-called {\em mixing time} of PP, is O(δ1(logN+logϵ1))O(\delta^{-1} (\log N + \log \epsilon^{-1})), where δ\delta is the spectral gap of PP. We present a natural quantum version of this algorithm based on repeated measurements of the {\em quantum walk} Ut=eiPtU_t = e^{-iPt}. We show that it samples almost uniformly from SS with logarithmic dependence on ϵ1\epsilon^{-1} just as the classical walk PP does; previously, no such quantum walk algorithm was known. We then outline a framework for analyzing its running time and formulate two plausible conjectures which together would imply that it runs in time O(δ1/2logNlogϵ1)O(\delta^{-1/2} \log N \log \epsilon^{-1}) when PP is the standard transition matrix of a constant-degree graph. We prove each conjecture for a subclass of Cayley graphs.Comment: 13 pages; v2 added NSF grant info; v3 incorporated feedbac
    corecore