16,607 research outputs found

    The Chandra survey of the COSMOS field II: source detection and photometry

    Full text link
    The Chandra COSMOS Survey (C-COSMOS) is a large, 1.8 Ms, Chandra program, that covers the central contiguous ~0.92 deg^2 of the COSMOS field. C-COSMOS is the result of a complex tiling, with every position being observed in up to six overlapping pointings (four overlapping pointings in most of the central ~0.45 deg^2 area with the best exposure, and two overlapping pointings in most of the surrounding area, covering an additional ~0.47 deg^2). Therefore, the full exploitation of the C-COSMOS data requires a dedicated and accurate analysis focused on three main issues: 1) maximizing the sensitivity when the PSF changes strongly among different observations of the same source (from ~1 arcsec up to ~10 arcsec half power radius); 2) resolving close pairs; and 3) obtaining the best source localization and count rate. We present here our treatment of four key analysis items: source detection, localization, photometry, and survey sensitivity. Our final procedure consists of a two step procedure: (1) a wavelet detection algorithm, to find source candidates, (2) a maximum likelihood Point Spread Function fitting algorithm to evaluate the source count rates and the probability that each source candidate is a fluctuation of the background. We discuss the main characteristics of this procedure, that was the result of detailed comparisons between different detection algorithms and photometry tools, calibrated with extensive and dedicated simulations.Comment: Accepted for publication in The Astrophysical Journal Supplement Serie

    Statistical analysis of probability density functions for photometric redshifts through the KiDS-ESO-DR3 galaxies

    Get PDF
    Despite the high accuracy of photometric redshifts (zphot) derived using Machine Learning (ML) methods, the quantification of errors through reliable and accurate Probability Density Functions (PDFs) is still an open problem. First, because it is difficult to accurately assess the contribution from different sources of errors, namely internal to the method itself and from the photometric features defining the available parameter space. Second, because the problem of defining a robust statistical method, always able to quantify and qualify the PDF estimation validity, is still an open issue. We present a comparison among PDFs obtained using three different methods on the same data set: two ML techniques, METAPHOR (Machine-learning Estimation Tool for Accurate PHOtometric Redshifts) and ANNz2, plus the spectral energy distribution template fitting method, BPZ. The photometric data were extracted from the KiDS (Kilo Degree Survey) ESO Data Release 3, while the spectroscopy was obtained from the GAMA (Galaxy and Mass Assembly) Data Release 2. The statistical evaluation of both individual and stacked PDFs was done through quantitative and qualitative estimators, including a dummy PDF, useful to verify whether different statistical estimators can correctly assess PDF quality. We conclude that, in order to quantify the reliability and accuracy of any zphot PDF method, a combined set of statistical estimators is required.Comment: Accepted for publication by MNRAS, 20 pages, 14 figure

    Star formation histories and evolution of 35 brightest E+A galaxies from SDSS DR5

    Full text link
    We pick out the 35 brightest galaxies from Goto's E+A galaxies catalogue which are selected from the Sloan Digital Sky Survey Data Release 5. The spectra of E+As are prominently characterized by the strong Balmer absorption lines but little [Oii] or H_alpha emission lines. In this work we study the stellar populations of the sample galaxies by fitting their spectra using ULySS, which is a robust full spectrum fitting method. We fit each of the sample with 1-population (a single stellar population-a SSP) and 3-population (3 SSPs) models, separately. By 1-population fits, we obtain SSP-equivalent ages and metallicities which correspond to the `luminosity-weighted' averages. By 3-population fits, we divide components into three groups in age (old stellar population-OSP, intermediate-age stellar population-ISP, and young stellar population-YSP), and then get the optimal age, metallicity and population fractions in both mass and light for OSP, ISP and YSP. During the fits, both Pegase.HR/Elodie3.1 and Vazdekis/Miles are used as two independent population models. The two models result in generally consistent conclusions as follows: for all the sample galaxies, YSPs (< 1Gyr) make important contributions to the light. However, the dominant contributors to mass are OSPs. We also reconstruct the smoothing star formation histories (SFHs) by giving star formation rate (SFR) versus evolutionary age. In addition, we fit the E+A sample and 34 randomly selected elliptical galaxies with 2-population (2 SSPs) model. We obtain the equivalent age of old components for each of the E+A sample and elliptical galaxies. By comparison, the old components of E+As are statistically much younger than those of ellipticals. From the standpoint of the stellar population age, this probably provides an evidence for the proposed evolutionary link from E+As to early-types (E/S0s).Comment: 16 pages, 9 figures, Accepted for publication on MNRA

    Chandra survey in the AKARI North Ecliptic Pole Deep Field. I. X-ray data, point-like source catalog, sensitivity maps, and number counts

    Full text link
    We present data products from the 300 ks Chandra survey in the AKARI North Ecliptic Pole (NEP) deep field. This field has a unique set of 9-band infrared photometry covering 2-24 micron from the AKARI Infrared Camera, including mid-infrared (MIR) bands not covered by Spitzer. The survey is one of the deepest ever achieved at ~15 micron, and is by far the widest among those with similar depths in the MIR. This makes this field unique for the MIR-selection of AGN at z~1. We design a source detection procedure, which performs joint Maximum Likelihood PSF fits on all of our 15 mosaicked Chandra pointings covering an area of 0.34 square degree. The procedure has been highly optimized and tested by simulations. We provide a point source catalog with photometry and Bayesian-based 90 per cent confidence upper limits in the 0.5-7, 0.5-2, 2-7, 2-4, and 4-7 keV bands. The catalog contains 457 X-ray sources and the spurious fraction is estimated to be ~1.7 per cent. Sensitivity and 90 per cent confidence upper flux limits maps in all bands are provided as well. We search for optical MIR counterparts in the central 0.25 square degree, where deep Subaru Suprime-Cam multiband images exist. Among the 377 X-ray sources detected there, ~80 per cent have optical counterparts and ~60 per cent also have AKARI mid-IR counterparts. We cross-match our X-ray sources with MIR-selected AGN from Hanami et al. (2012). Around 30 per cent of all AGN that have MID-IR SEDs purely explainable by AGN activity are strong Compton-thick AGN candidates.Comment: 23 pages, 20 figures; catalogs, sensitivity maps, and upper limit flux maps are available from the VizieR Servic

    MKID development for SuperSpec: an on-chip, mm-wave, filter-bank spectrometer

    Get PDF
    SuperSpec is an ultra-compact spectrometer-on-a-chip for millimeter and submillimeter wavelength astronomy. Its very small size, wide spectral bandwidth, and highly multiplexed readout will enable construction of powerful multibeam spectrometers for high-redshift observations. The spectrometer consists of a horn-coupled microstrip feedline, a bank of narrow-band superconducting resonator filters that provide spectral selectivity, and Kinetic Inductance Detectors (KIDs) that detect the power admitted by each filter resonator. The design is realized using thin-film lithographic structures on a silicon wafer. The mm-wave microstrip feedline and spectral filters of the first prototype are designed to operate in the band from 195-310 GHz and are fabricated from niobium with at Tc of 9.2K. The KIDs are designed to operate at hundreds of MHz and are fabricated from titanium nitride with a Tc of 2K. Radiation incident on the horn travels along the mm-wave microstrip, passes through the frequency-selective filter, and is finally absorbed by the corresponding KID where it causes a measurable shift in the resonant frequency. In this proceedings, we present the design of the KIDs employed in SuperSpec and the results of initial laboratory testing of a prototype device. We will also briefly describe the ongoing development of a demonstration instrument that will consist of two 500-channel, R=700 spectrometers, one operating in the 1-mm atmospheric window and the other covering the 650 and 850 micron bands.Comment: As submitted, except that "in prep" references have been update

    Measurement of the Flux of Ultrahigh Energy Cosmic Rays from Monocular Observations by the High Resolution Fly's Eye Experiment

    Get PDF
    We have measured the cosmic ray spectrum above 10^17.2 eV using the two air fluorescence detectors of the High Resolution Fly's Eye observatory operating in monocular mode. We describe the detector, photo-tube and atmospheric calibrations, as well as the analysis techniques for the two detectors. We fit the spectrum to a model consisting of galactic and extra-galactic sources.Comment: 4 pages, 4 figures. Uses 10pt.rtx, amsmath.sty, aps.rtx, revsymb.sty, revtex4.cl

    An obscured AGN population hidden in the VIPERS galaxies: identification through spectral energy distribution decomposition

    Full text link
    The detection of X-ray emission constitutes a reliable and efficient tool for the selection of Active Galactic Nuclei (AGNs), although it may be biased against the most heavily absorbed AGNs. Simple mid-IR broad-band selection criteria identify a large number of luminous and absorbed AGNs, yet again host contamination could lead to non-uniform and incomplete samples. Spectral Energy Distribution (SED) decomposition is able to decouple the emission from the AGN versus that from star-forming regions, revealing weaker AGN components. We aim to identify the obscured AGN population in the VIPERS survey in the CFHTLS W1 field through SED modelling. We construct SEDs for 6,860 sources and identify 160 AGNs at a high confidence level using a Bayesian approach. Using optical spectroscopy, we confirm the nature of ~85% of the AGNs. Our AGN sample is highly complete (~92%) compared to mid-IR colour selected AGNs, including a significant number of galaxy-dominated systems with lower luminosities. In addition to the lack of X-ray emission (80%), the SED fitting results suggest that the majority of the sources are obscured. We use a number of diagnostic criteria in the optical, infrared and X-ray regime to verify these results. Interestingly, only 35% of the most luminous mid-IR selected AGNs have X-ray counterparts suggesting strong absorption. Our work emphasizes the importance of using SED decomposition techniques to select a population of type II AGNs, which may remain undetected by either X-ray or IR colour surveys.Comment: Accepted for publication in MNRAS in May 4, 2020. 18 figures, 3 tables

    Storage Sizing and Placement through Operational and Uncertainty-Aware Simulations

    Full text link
    As the penetration level of transmission-scale time-intermittent renewable generation resources increases, control of flexible resources will become important to mitigating the fluctuations due to these new renewable resources. Flexible resources may include new or existing synchronous generators as well as new energy storage devices. Optimal placement and sizing of energy storage to minimize costs of integrating renewable resources is a difficult optimization problem. Further,optimal planning procedures typically do not consider the effect of the time dependence of operations and may lead to unsatisfactory results. Here, we use an optimal energy storage control algorithm to develop a heuristic procedure for energy storage placement and sizing. We perform operational simulation under various time profiles of intermittent generation, loads and interchanges (artificially generated or from historical data) and accumulate statistics of the usage of storage at each node under the optimal dispatch. We develop a greedy heuristic based on the accumulated statistics to obtain a minimal set of nodes for storage placement. The quality of the heuristic is explored by comparing our results to the obvious heuristic of placing storage at the renewables for IEEE benchmarks and real-world network topologies.Comment: To Appear in proceedings of Hawaii International Conference on System Sciences (HICSS-2014
    • …
    corecore