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Abstract Many models have been suggested to calculate 
fuzzy probabilities in risk analysis. In general, the reliability of 
a model is demonstrated by practical effects or proved theo-
retically. In this article we suggest a new approach called the 
cover technique to verify the model’s reliability. The technique 
is based on a hypothesis that a statistical result can approxi-
mately confirm a fuzzy probability as a fuzzy-set-valued 
probability. A cover is constructed by many biprobability 
distributions. The consistency degree of a cover and a fuzzy 
probability distribution is employed to verify the reliability of 
a model. We present a case that shows how to construct a 
distribution-cover and calculate the consistency degree of 
the cover and a possibility-probability distribution. A series 
of numerical experiments with random samples from a 
normal distribution verify the reliability of the interior-outer-set 
model.
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1 Introduction

In recent years the problem of estimating a fuzzy probability 
with a small sample has been given much attention in risk 
analysis. With incomplete information, it is difficult to clearly 
see the scenes in the future associated with some adverse 
incident. The scenes are fuzzy risks (Huang and Ruan 2008) 
and we would employ models to calculate fuzzy probabilities 
for representing risks. For example, the fuzzy probability of 
earthquake magnitude given in Karimi and Hülermeier (2007) 
represents the fuzzy seismic risk found in the North Anatolian 
Fault.

Since fuzzy theory was born, the fuzzy community started 
thinking of fuzzy probability. Most researchers accept the 
concept of the probability of a fuzzy event (Zadeh 1968) 
where a basic probability distribution is given.

Following an approach to model uncertainty that was 
pioneered by Ramsey (1931) and further developed by de 
Finetti (1937), Williams (1975), and Walley (1991), de 
Cooman (2005) has presented a sound and deep approach to 
vague probability.

In statistical applications, imprecise probabilities usually 
come from subjectively assessed prior probabilities. Fuzzy 
set theory is applicable to the modeling of imprecise subjec-
tive probabilities, and is suggested by many researchers, for 
example Freeling (1980), Watson, Weiss, and Donnell (1979), 
and Dubois and Prade (1989).

There is an urgent need to verify whether a model that 
calculates fuzzy probabilities is reliable before it can be 
employed in risk analysis. For example, we suppose that a 
group of terrorists monitored by a security department has 
slipped into a city. According to statistical data, the depart-
ment could estimate the probability of death toll x resulting 
from the attack of the group, denoted as p(x), and employ it to 
describe the risk of the terrorism attack. However, nobody 
believes the p(x) because the available data are scarce. Thus, 
a fuzzy probability ( )p x

�
would be a reasonable improvement 

for risk analysis of a potential terrorism attack. It is necessary 
to verify the reliability of the model used to calculate ( )p x

�before we suggest it to the security department.
Many models have been suggested to calculate fuzzy 

probabilities. Some have been demonstrated with practical 
effects (Tanaka, Fan, and Toguchi 1983; de Cooman 2005), 
and others would be proven by using mathematical theory 
(Moeller and Beer 2003).

In this article we develop the histogram-covering approach 
(Huang and Jia 2008) into a more general cover technique to 
verify the reliability of a model that is employed to calculate 
fuzzy probabilities. The technique is based on a hypothesis 
that a statistical result can approximately confirm a fuzzy 
probability as a fuzzy-set-valued probability. The key concept 
in the technique is “biprobability distribution” that is a prob-
ability of probability of event occurrence. Many biprobability 
distributions form a cover. 
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This article is organized as follows: Section 2 presents the 
cover hypothesis; Section 3 introduces the cover of probabil-
ity distributions; Section 4 defines the consistency degree 
of a cover and a possibility-probability distribution (PPD); 
Section 5 presents two kinds of covers constructed with 
histograms; Section 6 introduces interior-outer-set model to 
calculate a possibility-probability distribution. In section 7, 
we verify that interior-outer-set model is reliable. We 
conclude this article with section 8.

2 Primeval Hypotheses

This study illustrates that a statistical result can approximatel y 
confirm a fuzzy probability represented as a fuzzy-set-valued 
probability.

First of all, let us look at the example of observing balls 
drawn from an urn to estimate the probability of drawing a red 
ball. The urn contains black balls, brown balls, red balls, 
orange balls, yellow balls, green balls, blue balls, purple balls, 
grey balls, and white balls. If we draw all balls from the urn, 
we can accurately estimate the probability of drawing a red 
ball. In case we draw a small number of balls, the probability 
cannot be accurately estimated in terms of statistics.

There is no loss in generality when we suppose that there 
are n red balls and m non-red balls in the urn. Furthermore, 
suppose a ball is drawn at random from the urn. By the rela-
tive frequency approach, the probability of obtaining a red 
ball is P = n / (n + m).

The problem we study is to estimate the probability by 
observing s balls drawn from an urn, where +s n m� . We 
suppose that there are ns red balls among s balls. = /ˆ

sP n s is 
used to estimate P. In terms of statistics, P̂ P≠ . In other 
words, we cannot determine an exact probability of obtaining 
a red ball until we draw all balls from the urn. The fuzzy 
framework suits for representing the uncertainty in the 
probability estimate.

Let M be a model to fuzzify P̂  so that we can obtain a 
fuzzy probablity P

�
, particularly expressed with a possibility 

distribution ( ), [0,1]p p∈p  to represent the uncertainty in the 
probability estimate. For example, the model in Eq. 1 would 
be used to fuzzify P̂  into a possibility distribution shown 
in Figure 1a. When all balls are drawn to estimate the 
probability, the fuzziness will be zero (Figure 1b).

1, [ , ],
( ) =

0, otherwise,

p a b
p

∈⎧
⎨
⎩

p  Eq. 1

where a = max{0, P̂ – [1 – s / (n + m)]9}, b = min{1, P̂ + 
[1 – s / (n + m)]9}.

Obviously, nobody can confirm whether the model in 
Eq. 1 is suitable to represent the uncertainty of the probability 
of obtaining a red ball with respect to an experiment where 
s balls are drawn from n + m balls in an urn. We suggest two 
statistical hypotheses to verify the reliability of a model M. 
The hypothesis is called the cover hypothesis.

2.1 Subjective Cover Hypothesis

Consider the following case: In an experiment group there 
are l statisticians and one fuzzy engineer. Observing s balls 
drawn from an urn filled with S balls, s S� , they estimate 
the probability of obtaining a red ball.

The statisticians are good at estimating the probability by 
using their experience. The estimate given by ith statistician 
is denoted as p(i).

The fuzzy engineer is interested in mining fuzzy informa-
tion carried by a small sample and good at constructing a 
fuzzy model M to fuzzify a probability P̂  that is estimated 
by using the relative frequency into a possibility distribution 
p(p).

From the point of view of statistics, it is easy to understand 
that sample (1) (2) ( )

statisticians = { , , , }lX p p p�  provides confi-
dence information about the probability of obtaining a red 
ball. (1) (2) ( )= = = lp p p�  implies that the probability is p(1) 
with confidence. Regarding X as a general sample, we can 
obtain a probability distribution such as a histogram. Any 
probability distribution statisticians ( )P p  based on statisticiansX  is 
called a subject cover.

Figure 1. A possibility distribution to represent the uncertainty of the probability of obtaining a red ball with respect to 
an urn filled with 20 red balls and 80 non-red balls. (a) 20 balls are drawn to estimate the probability. Among them, 5 balls 
are red and 15 balls are non-red. P̂ = 5 / 20 = 0.25, s n m 9 9(1 / ( + )) = (1 20 / 100) = 0.1342− − , =max{0,0.25 0.1342} = 0.1158−a , 
b =min{1,0.25 +0.1342} = 0.3842 . (b) All balls are drawn to estimate the probability. P̂ a b= 20 /100 = 0.2, = = 0.2.
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From the point of view of possibility theory (Zadeh 1978), 
p(p) implies that the probability is p in possibility p(p) in 
terms of confidence restriction. Therefore, if a subject cover 
is similar as p(p), the cover confirms, in some degree, that the 
fuzzy model M is reliable.

Our hypothesis is that there must exist a subject cover 
statisticians ( )P p  to verify whether a fuzzy model M is reliable.

It is not difficult to invite l statisticians to participate in the 
experiment, where the statisticians estimate the probability of 
obtaining a red ball with the s observations and their experi-
ence. Therefore, the hypothesis is accepted that the set of their 
estimates is a subject cover.

2.2 Random Cover Hypothesis

Consider the following case: In an experiment group there are 
one statistician and one fuzzy engineer. The statistician runs 
N experiments, and each time he draws s balls from the urn. 
The estimate of the probability of obtaining a red ball from 
the ith experiment is also denoted as p(i).

(1) (2) ( )
experiments = { , , , }NX p p p�  also provides confidence 

information about the probability of obtaining a red ball. Any 
probability distribution experiments ( )P p  based on the experimentsX  
is call a random cover.

Observing s balls drawn from an urn filled with S balls, 
s S� , the fuzzy engineer employs a fuzzy M to obtain a 
fuzzy distribution p(p) for the probability of obtaining a red 
ball.

The random cover hypothesis is described as that there 
must exist a random cover experiments ( )P p  to verify whether a 
fuzzy model M is reliable.

It is easy to run many experiments when s S� , and the 
results of the experiments are different. Therefore, the 
hypothesis is accepted that the set of the results is a random 
cover.

3 Cover of Probability Distributions

The primeval hypotheses in section 2 serve as the fuzzy mod-
els that fuzzify a probability value. In risk analysis, the fuzzy 
risk is frequently related to a possibility-probability distribu-
tion (Huang and Moraga 2002; Karimi and Hülermeier 2007; 
Huang and Ruan 2008), defined in Eq. 2.

, = { ( ) | , }U x pp
p x p UΩΠ ∈Ω ∈p  Eq. 2

where V stands for the population from which we draw a 
sample v, Up is the universe of discourse of probability. Let 
j be a real function defined on V, then x = j(v), v ∈ V, is 
a random variable. x and v are equipollent to identify an 
event. px(p) is the possibility that an event occurs with 
probability p.

We extend the concept of the cover to correspond with 
probability distributions p(i)(x), i  =  1,2,…,l, instead of 
probability values p(i), i = 1,2,…,l, shown in section 2.

Let X be a sample drawn from a population V with a 
theoretical probability distribution p(x). Let c be a statistical 

method, such as Maximum Likelihood, which processes X 
to give an estimate of the probability distribution, written as 

( )Xp xc .
That is, for a population V, the theoretical probability 

distribution p(x) is unique, but the different samples 1,X

2 , , NX X�  lead us to have different estimates 
1
( ),Xp xc

2
( ), , ( )X XN

p x p xc c� .
0x∀ ∈Ω , to estimate p(x0), we have N values 01

( ),Xp xc

0 02
( ), , ( )X XN

p x p xc c� . They form a sample, called probability 
sample, written as 

0x
W , that is, 

0 00 1 2
= { ( ), ( ), ,x X XW p x p xc c �

0( )}XN
p xc .

Let w be a statistical model employed to process 
0x

W  and 
obtain a probability distribution at x0, called biprobability 
distribution, written as 

0

( ), [0,1]Wx
p p ∈pw .

For example, Let
2

2

1 ( 6.86)
( ) = [ ], < < ,

2 0.3720.372 2
exp

x
p x x

−
− −∞ ∞

×p
 Eq. 3

x is a random variable obeying normal distribution 
N(6.86,0.3722). With 10 random seed numbers, respectively, 
running Program 2 in Huang and Shi (2002), a generator 
of random numbers, with MU=6.86, the standard deviation 
SIGMA=0.372, and the sample size N=11, we obtain 10 
samples, one of them is,

1 1 2 11= { , , , }

= {6.91,6.59,6.31,6.50,7.03,6.49,

7.27,7.13,6.72,7.42,6.34}.

X x x x�
 Eq. 4

Let c be the Maximum Likelihood, we have 10 probability 
distributions from the samples. For example, from X1, we 
obtain,

2

21

1 ( 6.79)
( ) = [ ], < < .

2 0.3720.365 2
expX

x
p x x

−
− −∞ ∞

×
c

p

For x0 = 7.3, we have 
1
(7.3) = 0.414Xp

c . Totally,

7.3 1 2 10
= { (7.3), (7.3), , (7.3)}

= {0.414,0.523, ,0.947}.

X X XW p p pc c c�

�
 Eq. 5

When we assume that W7.3 in Eq. 5 obeys normal distribution, 
with Maximum Likelihood to be w, we have a biprobability 
distribution,

2

27.3

1 ( 0.494)
( ) = [ ], 0 1,

2 0.2730.273 2
expW

p
p p

−
− ≤ ≤

×
pw

p

which is shown in Figure 2. In practice, the biprobability dis-
tribution is not the normal distribution inferred by using the 
central limit theorem, because the integration of the function 

7.3
( )W ppw  in [0,1] is less than 1. That we use the normal distri-

bution assumption is to reduce the complexity in discussing 
the property of a biprobability distribution.

Let

( , ) = ( ), , [0,1]Wx
C x p p x p∈Ω ∈pw

be a family of biprobability distributions corresponding to 
a population with distribution p(x). For any fixed x, C(x,  p) is 
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a probability distribution with respect to variable p. It is a 
density function for a continuous distribution defined on 
interval [0,1], or a discrete function for a discrete distribution 
defined on a universe Up of discourse of probability. The 
family C(x,  p) is called a cover of probability distributions. 
Obviously, C(x,  p) is a random cover but not a subjective 
cover. According to the random cover hypothesis suggested 
in section 2, we infer that there must exist a cover C(x,  p) to 
verify the reliability of a fuzzy model M.

4 Consistency Degree of a Cover and a 
PPD

The primeval hypotheses suggested in section 2 only assert 
that it is possible to verify the reliability of a fuzzy model with 
a cover. In this section, we suggest an approach to compare 
a cover and a PPD for verification. The reliability degree of 
the model is measured by using the consistency degree of the 
cover and the PPD.

4.1 Consistency Degree

The concept of consistency is quite rough. Strictly speaking, 
a PPD and a cover C are consistent if and only if they 
are equality. In many cases, , { ( )} = 1sup xpx p∀ ∈Ω p , but 

{ ( , )} < 1sup p C x p . Let

( ) = ( , ) / { ( , )}.supx
p

p C x p C x ph

= { ( )}x pΘ h , , px p U∈Ω ∈ , is called a normalized cover.
We define that px(p) and C(x,  p) are consistent if and only 

if ∀x ∈V, px(p) = hx(p).
It is interesting to notice that from Figure 2 we know 

that ∀x, C(x,  p) is a probability distribution; therefore it is 

impossible for { ( , )}sup
p

C x p  to be very small. hx(p) is defined 

as a quotient, to force { ( )}sup x
p

ph  to be equal to 1. Hence, 

C and P may coincide well, when H and P can coincide.
Obviously, in a numerical experiment, in general, a PPD is 

not equal to a cover because the size of a sample is always 
limited. Therefore, it is necessary to weaken the condition of 
consistency.

Let ( , , )Ω PA  be a probability space, and Up be the 
universe of discourse of probability. Let P = {px(p)} and 
H = {hx(p)}, be a PPD and a cover, defined on V×Up, 
respectively.

Obviously, both px(p) and hx(p) are two-variable bounded 
functions. And, 0 ≤ px(p), hx(p) ≤ 1, that is, they are 0–1 
bounded functions. Hence, our problem can be simplified 
to study the consistency between two functions defined on a 
domain U.

Let F be a set of two-variable functions with domain U, 
denoted as F = {f (x, y) : U}. In our case, F is a set of 0–1 
bounded functions, and U = V×Up.

Definition 1. Let 1 2( , ), ( , )f x y f x y ∈F . f 2(x, y) is strictly 
consistent with f 1(x,  y) if and only if f 1(x,  y) = f 2(x,  y), 
∀(x, y) ∈U.

Let F = {f (x, y) : U} and Ux, Uy be the domains of x, and 
y, respectively, that is, U = Ux × Uy.

Definition 2. Let 1 2( , ), ( , )f x y f x y ∈F .

1 2 1 2

1
( , ) = | ( , ) ( , ) |

U Ux y
U Ux y

d f f f x y f x y dx dy
dx dy

−∫ ∫∫ ∫
 Eq. 6

is called the naive distance between f 1 and f 2.

1 2= 1 ( , )d f f−g

is called the consistent approximation.

Figure 2. A biprobability distribution is a probability distribution of the probability that an event occurs at x0. The theoretical 
probability distribution is the normal distribution N(6.86,0.3722). 10 samples lead us to have 10 probability distributions. For 
x0 = 7.3, we have 10 probability values from which a biprobability distribution is produced.
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g is an reasonable index to measure the consistency degree 
between two functions. However, with it, we overlook 
the information that f 1(x,  y) and f 2(x,  y) would reach extreme 
values in different points. Particularly, when f 1(x,  y) and 
f 2(x,  y) are equal to zero in the main part of U, g is not a good 
index for consistency. g is an upper consistency.

Let F be a set of 0–1 bounded functions, f 1(x,  y), f 2(x,  y) 
∈ F. Let

1

2

= {( , ) | ( , ) = 1, ( , ) },

= {( , ) | ( , ) = 1, ( , ) }.

A x y f x y x y U

B x y f x y x y U

∈
∈

A, B are called the kernels of f 1(x,  y), f 2(x,  y), respectively. 
We employ Z = A ∪ B, called the peak set, to show informa-
tion that f 1(x,  y) and f 2(x,  y) would reach 1 in different 
points.

Definition 3. Let F be a set of 0–1 bounded functions, 
1 2( , ), ( , )f x y f x y ∈F  with a peak set Z.

1 2

1 2

1 2

( , ) =

1
| ( , ) ( , ) | , ;

1
| ( , ) ( , ) |,  

| |

Z

Z

i j i j
i j

D f f

f x y f x y dx dy Z is integrable
dx dy

f x y f x y Z is a discrete set
Z

⎧ −⎪
⎪
⎨
⎪

−⎪
⎩

∫∫∫∫

∑∑

 
Eq. 7

is called the extremal error between f 1 and f 2, where | Z | is 
cardinal number of Z.

1 2= 1 ( , )D f f−b

is called the consistent kernel.
In the case that the peak set Z is not integrable, nor dis-

crete, the expression of the consistent kernel may be complex. 
In practice, the Z is usually discrete.

Obviously, if A = B, then b = 1. Otherwise, the largest error 
between f 1(x,  y), f 2(x,  y) on the peak set Z determines the 
consistent kernel. b is a lower consistency.

Definition 4. Let f 1(x,  y), f 2(x,  y) be 0–1 bounded functions 
with U. f 2(x,  y) is consistent with f 1(x,  y) in degree a = (g + b) 
/  2, if and only if their consistent approximation is g and 
consistent kernel is b.

a is also called the consistency degree of f 2(x,  y) to f 1(x,  y).

4.2 Consistency Degree of a Cover and a PPD

Let V be a population and Up a universe of discourse of 
probability. Given a normalized cover H = {hx(p)} and a PPD 
P = {px(p)} defined on V×Up, we study the consistency 
degree of H and P.

Employing formula in Eq. 6 and Eq. 7, respectively, we 
obtain the naive distance and the extremal error between H 
and P, shown in Eq. 8 and Eq. 9.

1
( , ) = | ( ) ( ) | ,x xUp

Up

d p p dx dp
dx dp Ω

Ω

Θ Π −∫ ∫∫ ∫
h p  Eq. 8

( , ) =

1
| ( ) ( ) | , is integrable;

1
| ( ) ( ) |, is a discrete set

| |

x x

Z

Z

x j x ji i
i j

D

p p dx dp Z
dx dp

p p Z
Z

Θ Π

⎧ −⎪
⎪
⎨
⎪

−⎪
⎩

∫∫∫∫

∑∑

h p

h p

 Eq. 9

where = {( , ) | ( ) = 1, ( ) = 1, , }x x pZ x p p p x p U∈Ω ∈h p .
According to Definition 4, the consistency degree of H 

and P is a(H, P) shown in Eq. 10:

( , ) ( , )
( , ) =

2
( , ) ( , )

= 1 .
2

d D

Θ Π + Θ Π
Θ Π

Θ Π + Θ Π
−

g b
a

 Eq. 10

a(H, P) is called a consistency degree of a cover with nor-
malization H and a PPD P. In other words, the consistency 
degree of a cover and a PPD is defined by the consistency 
degree of the cover’s normalization and the PPD.

5 Two Kinds of Covers Constructed with 
Histograms

A histogram is a graph of grouped (binned) data in which the 
number of values in each bin is represented by the area of a 
rectangular box. A relative frequency histogram, as an esti-
mate of the probability distribution of a continuous variable, 
is a bar graph constructed in such a way that the area of 
each bar is proportional to the fraction of observations in the 
category that it represents. 

5.1 Relative Frequency Histogram

Let = { | = 1,2, , }iX x i n�  be a sample drawn from V 
with a probability density distribution (PDF) p(x), and 

0 0= [ ( 1) , ), = 1,2, ,jI x j h x jh j m+ − + � , be m intervals for 
constructing a histogram with X.

1
( ) = (number of in the same interval as ),h

X ip x x x
n

 Eq. 11

is called a relative frequency histogram (RFH) with respect 
to X. ( )h

Xp x  is an estimate of probability that an event occurs 
in the same interval as x.

Let uj be the midpoint of interval Ij. We obtain a discrete 
domain of definition of ( )h

Xp x

= { | = 1,2, , }.jU u j m�

Hence, a RFH ( )h
Xp x  can be represented by using a discrete 

distribution:

1 2= { ( ), ( ), , ( )}.h h h
X X X mH p u p u p u�

5.2 Probability Sample

Let 1 2, , , NX X X�  be N samples drawn from V, and 
1 2, , , mI I I�  be m intervals for constructing N RFHs with 
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the given samples. In other words, we employ the same 
intervals to make all histograms.

For an interval Ij, from N RFHs we obtain N probability 
estimate values. Hence, we obtain a probability sample

1 2
= { ( ), ( ), , ( )}h h h

I X j X j X jj N
W p u p u p u� .

The sample I j
W  is a set of the probability values estimated 

with a set of samples drawn from a population. The cardinal 
number of set I j

W  and set 1 2{ , , , }NX X X�  are the same 
(both are N). Probability ( )h

Xp u , estimated by using RFH 
with X in u, is only a possible value to probability that an 
event occurs in the interval which includes u.

5.3 Natural Cover of Histograms

According to N (the size of the probability sample), we 
divide probability domain [0,1] into t probability intervals, 

= [( 1) , )kA k k− d d , = 1,2, ,k t� , where t can be obtained by 
using Eq. 12 suggested by Otness and Encysin (1972), and 
probability step d = 1 / t.

2/5= 1.87( 1) .t N −  Eq. 12

Then, with probability sample I j
W , we can construct a bipro-

bability distribution, denoted as ( )h
W kI j

pp , = 1,2, ,k t� , 

where pk is the midpoint of Ak. Mathematically,

( ) =

1
(number of ( ) in the same bin as ), ( ) .

h
W kI j

h h
X j k X j I j

p

p u p p u W
N

∈

p

Let
( ) = ( ) / { ( )}.suph h

I k W k W kj I Ij jk

p p pp ph

= { ( ) | = 1,2, , }I I kj j
p k tΘ h �  is called a normalized cover 

with respect to Ij.
From m event intervals 1 2, , , mI I I� , we obtain m bipro-

bability distributions: 
1 2

( ), ( ), , ( )h h h
W k W k W kI I Im

p p pp p p� . They 
lead to a discrete cover that can be represented by a matrix in 
Eq. 13, which is called the natural cover of histograms.

1 2

1 21 1 11

1 22 2 2 2

1 2

( ) ( ) ( )

( ) ( ) ( )
=

( ) ( ) ( )

t

I I I t

I I I t

m I I I tm m m

A A A

p p pI

p p pI

I p p p

⎛ ⎞
⎜ ⎟
⎜ ⎟Θ ⎜ ⎟
⎜ ⎟
⎜ ⎟⎝ ⎠

h h h

h h h

h h h

�

�

�

� � � �
�

 Eq. 13

5.4 Distribution-Cover of Histograms

According to n (the size of the sample drawn from V with 
PDF p(x)), we construct a discrete universe of discourse of 
probability shown in Eq. 14.

1 2
= { | = 0,1,2, , } = {0, , , ,1}.p kU p k n

n n
� �  Eq. 14

For an interval Ij, we employ the information distribution 
formula in Eq. 15 to make a soft histogram estimation (Huang 
2002b) by using Eq. 16.

1 | ( ) |, | ( ) | 1 / ;
=

0, | ( ) |> 1/ .

h h
X j k X j ki i

ik h
X j ki

n p u p if p u p n

if p u p n

⎧ − − − ≤⎪
⎨ −⎪⎩

x
 
Eq. 15

=1( ) = , = 0,1,2, , .

N

ik
D i
W kI j

p k n
N

∑
p

x

�  Eq. 16

Let

( ) = ( ) / { ( )}.supD D D
I k W k W kj I Ij jk

p p pp ph  Eq. 17

Then,

= { ( ) | = 0,1,2, , }D D
I I kj j

p k nΘ h �  Eq. 18

is called a normalized cover with respect to Ij.
From m event intervals 1 2, , , mI I I� , we obtain m bipro-

bability distributions: 
1 2

( ), ( ), , ( )D D D
W k W k W kI I Im

p p pp p p� . They 
lead to a discrete cover that can be represented by a matrix in 
Eq. 19, which is called a distribution-cover of histograms.

1 2

1 21 1 11

1 22 2 2 2

1 2

( ) ( ) ( )

( ) ( ) ( )
=

( ) ( ) ( )

t

D D D
I I I t

D D D
I I I tD

D D D
m I I I tm m m

p p p

p p pI

p p pI

I p p p

⎛ ⎞
⎜ ⎟
⎜ ⎟Θ ⎜ ⎟
⎜ ⎟
⎜ ⎟⎝ ⎠

h h h

h h h

h h h

�

�

�

� � � �
�

 Eq. 19

Huang (2000) proved that, in the case where we only have 
a small sample to estimate a probability distribution, a soft 
histogram estimation is better than a histogram estimation in 
a higher work efficiency about 28 percent. In other words, if 
we need a sample including 30 observations for the histogram 
method, then less 28 percent is 30−30×28% = 30−8 = 22, a 
sample with 22 observations can give a soft histogram esti-
mation in a similarly accurate way. Therefore, we employ the 
distribution-cover of histograms to verify the reliability of a 
model for calculating fuzzy probabilities.

6 PPD Calculated by Interior-Outer-Set 
Model

Interior-outer-set model (IOSM) (Huang 2002a) is suggested 
to calculate, with a sample = { | = 1,2, , }iX x i n� , a PPD in 
Eq. 2 defined on I × Up, where,

= { | = 1,2, , },jI j mΙ �

and Up is shown in Eq. 14.
Let uj be the midpoint of interval Ij, 1 ,j ju u+Δ ≡ −

= 1,2, , 1j j −� . Let
1 | | / , | | ;

=
0, | |> .

i j i j

ij
i j

x u if x u
q

if x u

− − Δ − ≤ Δ⎧
⎨ − Δ⎩

qij is called the information gain of that observation xi 
distributed to controlling point uj.
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Definition 5. =in j jX X I− ∩  is called an interior set of inter-
val Ij. The elements of Xin – j are called the interior points 
of Ij.

Let A and B be two sets. { },A B x x A x B= ∈ ∉\  is called 
their set difference.

Definition 6. Let Xin–j be the interior set of interval Ij. 
out in= \j jX X X− −  is called an outer set of interval Ij. The 

elements of Xout – j  are called the outer points of Ij.
∀xi ∈ X, if xi ∈ Xin–j we say that it loses information, by 

gain at 1 – qij, to another interval, we use qij
– = 1 – qij to repre-

sent the loss; if xi ∈ Xout–j we say that it gives information, 
by gain at qij, to Ij, we use qij

+ to represent the addition. 
qij means that xi may leave Ij in possibility qij

– if xi ∈ Xin–j, 
or xi may join Ij in possibility qij

+ if xi ∈ Xout–j.
qij

– is called the leaving possibility, and qij
+ called the 

joining possibility. The leaving possibility of an outer point 
is defined as 0 (it has gone). The joining possibility of an 
interior point is defined as 0 (it has been in the interval).

Any model based qij
+ and qij

– to calculate a PPD on I × Up is 
called an IOSM. The first IOSM was suggested in Huang 
(1998) and applied to study the risk of crop flood giving a 
better result to support risk management in crops avoiding 
flood than the traditional probability method (Huang 2002a). 
In Huang and Moraga (2002), the model was transformed 
into a matrix algorithm. The second IOSM was suggested in 
Moraga and Huang (2003) with complexity in the O (n log n) 
class instead of complexity O(n2) and applied to make soft 
risk maps (Zhang 2005). The third IOSM was introduced in 
Zong (2004) to smooth the abrupt slopes in a PPD where the 
membership is less than or equal to 0.5 if it is not 1. This paper 
focuses on exploring a new approach to verify reliability, not 
to improve IOSM. Therefore, we employ the second IOSM in 
Eq. 20 to calculate a PPD.

( ) =

1st (smallest) element of , if = 0;

1
2nd element of , if = ;

1
Last (largest) element of , if = ;

1, if = ;

1
1st (largest) element of , if = ;

2
2nd element of , if = ;

Last element of , if = 1.

I j

j

j

j

j

j

j

j

j

j

j

p

Q p

Q p
n

n
Q p

n
n

p
n
n

Q p
n

n
Q p

n

Q p

−

−

−

+

+

+

⎧
⎪
⎪

−

⎨

+

+

p

� �

� �

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

 Eq. 20

where Q j
– is the list of qij

– according to ascending magnitude, 
Q j

+ is the list of qij
+ according to descending magnitude, and 

|  Q j
–  | = nj, that is, we suppose that there are nj observations 

falling in interval Ij.

Then, from a given sample X we can obtain a PPD on 
I × Up, written as:

0 1 2

1,0 1,1 1,2 1,1

2,0 2,1 2,2 2,2

,0 ,1 ,2 ,

=
,

n

n

nX

m m m m nm

p p p p

I

I

I

⎛ ⎞
⎜ ⎟Π ⎜ ⎟
⎜ ⎟
⎜ ⎟⎝ ⎠

p p p p

p p p p

p p p p

�

�
�

� � � ��
�

where , = ( )j k I kj
pp p . According to Eq. 20 we know that, if 

| |=j jQ n− , then , = 1j n j
p .

7 A Case to Verify the Reliability of 
Interior-Outer-Set Model

As an application, in this section we employ a distribution-
cover of histograms to verify whether IOSM is reliable.

7.1 Samples Given by Using a Generator of Random 
Numbers

Running Program 2 in Huang and Shi (2002), a generator of 
random numbers, with MU=6.86, SIGMA=0.372, N=11, and 
SEED=82,495, we obtain 11 random numbers:

1 2 11= { , , , }

= {0.91,6.59,6.31,6.50,7.03,6.49,

7.27,7.13,6.72,7.42,6.34},

X x x x�
 Eq. 21

whose population is a normal distribution N (6.86, 0.3722).
Again and again, running Program 2 with the same MU, 

SIGMA and N, but with another 90 different SEEDs, 
we obtain 90 samples, 1 2 90, , ,X X X� . For example, with 
SEED=876,905, we obtain:

3 =

{7.14,6.98,6.83,7.00,7.34,6.47,7.65,6.99,6.71,7.47,6.26}.

X

7.2 Histograms

Considering the range and size of the samples, we employ 
intervals:

1 2

3 4

= [5.65,6.25), = [6.25,6.85),

= [6.85,7.45), = [7.45,8.05),

I I

I I
 Eq. 22

to calculate RFHs. The midpoints of intervals lead to a 
discrete domain of definition:

1 2 3 4= { , , , } = {5.95,6.55,7.15,7.75}.U u u u u  Eq. 23

Employing RFH formula in Eq. 11 with intervals in Eq. 22 
and Xk, k  =  1, 2 …, 90, we obtain 90 RFHs 

1 2
( ), ( ), ,h h

X Xp x p x �

90
( )h

Xp x . For example, for X3, we obtain:

1 2 3 43 3 3 3
{ ( ), ( ), ( ), ( )} = {0.00,0.36,0.45,0.18}.h h h h

X X X Xp u p u p u p u
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7.3 Distribution-Cover of Histograms

For an interval Ij, from 90 RFHs we obtain a probability sample I j
W . For example, for I2 = [6.25, 6.85), we obtain:

2 1 2 3 90
 =  { (6.55), (6.55), (6.55), , (6.55)}

      =  {0.55,0.55,0.36,0.45,0.09,0.45,0.64,0.45,0.55,0.27,0.27,0.55,0.64,0.36,0.36,0.73,0.36,0.45,

0.36,0.27,0.64,0.27,0.45,0.36,0.36,0.55,0.64,

h h h h
I X X X XW p p p p�

0.45,0.45,0.64,0.55,0.27,0.45,0.36,0.45,0.55,

0.45,0.36,0.36,0.45,0.27,0.45,0.45,0.45,0.18,0.36,0.36,0.27,0.73,0.55,0.36,0.45,0.55,0.64,

0.64,0.27,0.55,0.36,0.64,0.45,0.36,0.36,0.36,0.55,0.36,0.36,0.18,0.27,0.27,0.55,0.55,0.64,

0.55,0.45,0.45,0.45,0.55,0.09,0.27,0.36,0.55,0.45,0.45,0.73,0.45,0.36,0.18,0.36,0.36,0.36}.

Then, employing Eq. 15–Eq. 18, with samples I j
W ,

 
= 1,2,3,4j  and controlling points = /11, = 0,1, ,11,kp k k � we 

obtain a distribution-cover of histograms shown in Eq. 24.
0 1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

1.00 0.40 0.14 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.08 0.12 0.46 1.00 0.92 0.67 0.38 0.12 0.00 0.00 0.00
=

0.00 0.05 0.19 0.38 0.90 1.00 0.90 0.71 0.05 0.10 0.00 0.00

1.00 0.45 0.17 0.06 0.0

D

p p p p p p p p p p p p

I

I

I

I

Θ .

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎝ ⎠

 Eq. 24

7.4 PPD

Employing IOSM in Eq. 20 with intervals in Eq. 22, the universe of discourse of probability in Eq. 14, and X in Eq. 21, we 
obtain a PPD:

0 1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

1.00 0.41 0.35 0.10 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.06 0.09 0.10 0.29 0.35 0.41 1.00 0.39 0.19 0.04 0.00 0.00
=

0.04 0.19 0.19 0.39 0.45 1.00 0.29 0.06 0.00 0.00 0.00 0.00

1.00 0.45 0.19 0.00 0.0

X

p p p p p p p p p p p p

I

I

I

I

Π

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎝ ⎠

. Eq. 25

7.5 Consistency Degree

In Eq. 24 and Eq. 25, the midpoint of Ij is uj in Eq. 23, and the universes of discourse of probability are equal. Therefore, for 
an easier comparison, the cover in Eq. 24 and the PPD in Eq. 25 can be rewritten as:

0 1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

1.00 0.40 0.14 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.08 0.12 0.46 1.00 0.92 0.67 0.38 0.12 0.00 0.00 0.00
=

0.00 0.05 0.19 0.38 0.90 1.00 0.90 0.71 0.05 0.10 0.00 0.00

1.00 0.45 0.17 0.06 0.0

D

p p p p p p p p p p p p

u

u

u

u

Θ ,

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎝ ⎠

 Eq. 26

0 1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

         

1.00 0.41 0.35 0.10 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.06 0.09 0.10 0.29 0.35 0.41 1.00 0.39 0.19 0.04 0.00 0.00
=

0.04 0.19 0.19 0.39 0.45 1.00 0.29 0.06 0.00 0.00 0.00 0.00

1.00 0.45 0.1

p p p p p p p p p p p p

u

u

u

u

Π .

9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎝ ⎠

 Eq. 27

Both HD and P are defined on {5.95,6.55,7.15,7.75}×
{0,1/11,2 /11, ,1}� . The HD statistically provides confi-
dence information about the probability that an event occurs 
in an interval. When the sample size n → ∞, the confidence 
will be 1 and the matrix will become a continuous relation to 
represent the normal distribution in Eq. 3. The P indicates 

that, with a small sample, it is impossible to accurately 
estimate a continuous probability distribution. And P shows 
various possibilities that an event occurs with more than one 
probability value. When n → ∞, the scattering of estimates 
will disappear and also the P will be a relation to represent 
the normal distribution.
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Using Eq. 8, we obtain the naive distance between HD 
and P:

,
1 4, 0 11

1
( , ) = | |

1
= | ( ) |

4 12

1
= (0 0.01 0.21 0.08 0.07 0 0 0 0

48
0 0 0 0.06 0.01 0.02 0.13 0.65

0.51 0.33 0.01 0.07 0.04 0 0 0.04

0.14 0 0.01 0.45 0 0.61 0.65 0.05

D D

U U p
U U p

D
I k j kj

j k

d du dp
du dp

p
≤ ≤ ≤ ≤

Θ Π Θ − Π

−
×

+ + + + + + + + +

+ + + + + + + +
+ + + + + + + +
+ + + + + + +

∫ ∫∫ ∫

∑ h p

0.10 0 0 0 0 0.02 0.06 0.02 0

0 0 0 0 0 0)

4.37
= = 0.091

48
.

+
+ + + + + + + + +

+ + + + +

The kernels of HD and P are, respectively

1 0 2 4 3 5 4 0

1 0 2 6 3 5 4 0

= {( , ), ( , ), ( , ), ( , )},

= {( , ), ( , ), ( , ), ( , )}.

A u p u p u p u p

B u p u p u p u p

Then, the peak set of the cover and PPD is

1 0 2 4 2 6 3 5 4 0= {( , ), ( , ), ( , ), ( , ), ( , )}.Z u p u p u p u p u p

The Z is a discrete set, with cardinal number 5.
Using Eq. 9, we obtain the extremal error between HD 

and P:

,
( , )

1
( , ) = | ( ) |

5

1
= (|1 0.35 | | 0.67 1|) = 0.196.

5

D D
I k j kj

u p Zj k

D p
∈

Θ Π −

− + −

∑ h p

Finally, using Eq. 10, we obtain the consistency degree of 
P and HD,

( , ) ( , )
( , ) = 1

2
0.091 0.196

= 1 = 0.857.
2

D D
D d DΘ Π + Θ Π

Θ Π −

+
−

a

Notice that, for most ( , ) {5.95,6.55,7.15,7.75}u p ∈ ×
{0,1/11,2 /11, ,1}� , HD is less than or equal to P. Accord-
ing to Definition 4, we know that P is consistent with HD 
in degree 0.857.

Resimulating with other seed numbers, we have another 
20 numerical experiments, and the consistency degrees are in 
[0.8332, 0.8789]. The degree about 0.86 is not so high and a 
development (Zong 2004) has been done for IOSM, but the 
applications of IOSM are successful (Huang 2002a; Zhang 
2005). Therefore, we infer that IOSM is basically reliable.

The more sound conclusion at this stage would be based 
on the performance of the proposed method change in terms 
of the size of sample. It would be better to conduct a series 
of experiments based on different sample sizes to give a 
complete picture.

8 Conclusions

Except the pseudo risk that we are able to accurately predict 
by using system models and currently available data, what 
we can know about a risk is limited. In some cases, the risk 
would be represented with a fuzzy probablity. It is important 
to verify the reliability of a model for calculating fuzzy 
probabilities with a given sample.

The suggested approach consists of a hypothesis, a cover, 
and the interior-outer-set model. When a fuzzy probability 
depends on a given sample, all evidences lend support to the 
proposed hypothesis that a statistical result can approximatel y 
confirm a fuzzy probability. With a given sample we can have 
an estimation of the probability distribution of the population 
from which the sample is drawn. N samples lead to N estima-
tions. The set of the estimations will cover the probability 
distribution. The set is a cover. We can employ the cover to 
check if a fuzzy probablity inferred by using a given sample 
from the same population approximately cover the probabil-
ity distribution. Then we can employ the cover technique 
to verify the reliability of a model for calculating fuzzy 
probabilities.

In this article, we show a distribution-cover that, with 
consistent degree 0.857, confirms a possibility-probability 
distribution calculated by using the interior-outer-set model. 
The consistent degrees resulted from other numerical experi-
ments are almost same. Although the degree, about 0.86, is 
not so high, we infer that the interior-outer-set model is 
basically reliable, because the applications of the model are 
successful (Huang 2002a; Zhang 2005).
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