20,829 research outputs found
Image enhancement using fuzzy intensity measure and adaptive clipping histogram equalization
Image enhancement aims at processing an input
image so that the visual content of the output image is more
pleasing or more useful for certain applications. Although
histogram equalization is widely used in image enhancement due
to its simplicity and effectiveness, it changes the mean brightness
of the enhanced image and introduces a high level of noise and
distortion. To address these problems, this paper proposes
image enhancement using fuzzy intensity measure and adaptive
clipping histogram equalization (FIMHE). FIMHE uses fuzzy
intensity measure to first segment the histogram of the original
image, and then clip the histogram adaptively in order to
prevent excessive image enhancement. Experiments on the
Berkeley database and CVF-UGR-Image database show that
FIMHE outperforms state-of-the-art histogram equalization
based methods
A Comparative Study on Histogram Equalization and Cumulative Histogram Equalization
Image enhancement is a way to improve the appearance of image to human viewers or to image processing system performance. Image Enhancement techniques can be classified into two categories as spatial domain and frequency domain. There arenbsp five image enhancement algorithms in spatial domain using FPGA technology. These algorithms are: median filter, contrast stretching, histogram equalization, negative image transformation and power-law transformation. This review paper presents different methods of histogram equalization. Histogram equalization is a method to enhance an image very efficiently. Histogram equalization methods are Histogram expansion, Local area histogram equalization (LAHE), Cumulative histogram equalization, Par sectioning, odd sectioning
Exact Histogram Specification Optimized for Structural Similarity
An exact histogram specification (EHS) method modifies its input image to
have a specified histogram. Applications of EHS include image (contrast)
enhancement (e.g., by histogram equalization) and histogram watermarking.
Performing EHS on an image, however, reduces its visual quality. Starting from
the output of a generic EHS method, we maximize the structural similarity index
(SSIM) between the original image (before EHS) and the result of EHS
iteratively. Essential in this process is the computationally simple and
accurate formula we derive for SSIM gradient. As it is based on gradient
ascent, the proposed EHS always converges. Experimental results confirm that
while obtaining the histogram exactly as specified, the proposed method
invariably outperforms the existing methods in terms of visual quality of the
result. The computational complexity of the proposed method is shown to be of
the same order as that of the existing methods.
Index terms: histogram modification, histogram equalization, optimization for
perceptual visual quality, structural similarity gradient ascent, histogram
watermarking, contrast enhancement
Recommended from our members
Contrast enhancement by multi-scale adaptive histogram equalization
An approach for contrast enhancement utilizing multi-scale analysis is introduced. Sub-band coefficients were modified by the method of adaptive histogram equalization. To achieve optimal contrast enhancement, the sizes of sub-regions were chosen with consideration to the support of the analysis filters. The enhanced images provided subtle details of tissues that are only visible with tedious contrast/brightness windowing methods currently used in clinical reading. We present results on chest CT data, which shows significant improvement over existing state-of-the-art methods: unsharp masking, adaptive histogram equalization (AHE), and the contrast limited adaptive histogram equalization (CLAHE). A systematic study on 109 clinical chest CT images by three radiologists suggests the promise of this method in terms of both interpretation time and diagnostic performance on different pathological cases. In addition, radiologists observed no noticeable artifacts or amplification of noise that usually appears in traditional adaptive histogram equalization and its variations
- …
