125 research outputs found

    Temporal and Spatial Alignment of Multimedia Signals

    Get PDF
    With the increasing availability of cameras and other mobile devices, digital images and videos are becoming ubiquitous. Research efforts have been made to develop technologies that utilize multiple pieces of multimedia information simultaneously. This dissertation focuses on the temporal and spatial alignment of multimedia signals, which is a fundamental problem that needs to be solved to enable such applications dealing with multiple pieces of multimedia data. The first part of the dissertation addresses the synchronization of multimedia signals. We propose a new modality for audio and video synchronization based on the electric network frequency (ENF) signal naturally embedded in multimedia recordings. Synchronization of audio and video is achieved by aligning the ENF signals. The proposed method offers a significant departure to tackling the audio/video synchronization problem from existing work, and a strong potential to address previously untractable scenarios. Estimation of the ENF signal from video is a challenging task. In order to address the problem of insufficient sampling rate of video, we propose to exploit the rolling shutter mechanism commonly adopted in CMOS camera sensors. Several techniques are designed to alleviate the distortions of motions and brightness changes in videos for ENF estimation. We also address several challenges that are unique to the synchronization of digitized analog audio recordings. Speed offset often occurs in digitized analog audio recordings due to the inconsistency in the tape's rolling speed. We show that the ENF signal captured by the original analog audio recording can be retained in the digitized version. The ENF signal is considered approximately as a single-tone signal and used as a reference to detect and correct speed offsets automatically. A complete multimedia application system often needs to jointly consider both temporal synchronization and spatial alignment. The last part of the dissertation examines the quality assessment of local image features for efficient and robust spatial alignment. We propose a scheme to evaluate the quality of SIFT features in terms of their robustness and discriminability. A quality score is assigned to every SIFT feature based on its contrast value, scale and descriptor, using a quality metric kernel that is obtained in a one-time training phase. Feature selection is performed by retaining features with high quality scores. The proposed approach is also applicable to other local image features, such as the Speeded Up Robust Features (SURF)

    Multi-component and multi-source approach to model subsidence in deltas. Application to Po Delta Area

    Get PDF
    This thesis focused on the definition of a study approach able to deal with the complexity of the land subsidence phenomenon in deltas. In the framework of the most up- to-date multi-methodological and multi-disciplinary studies concerning land subsidence and targeting to predict and prevent flooding risk, the thesis introduces a procedure based on two main innovations: the multi-component study and the multi-source analysis. The proposed approach is a “multi-component” procedure as it investigates, in the available geodetic datasets, the permanent component apart from the periodic one, and, at the same time, it is a “multi-source” approach because it attempts to identify the relevant processes causing subsidence (sources) by a modelling based on multi-source data analysis. The latter task is accomplished first through multi-disciplinary and multi-methodological comparative analyses, then through modelling of the selected processes. With respect to past and current approaches for studying subsidence phenomena, the developed procedure allows one to: i. overcome the one-component investigation, improving the accuracy in the geodetic velocity estimate; ii. fix the “analyses to modelling” procedure, enhancing qualitative or semi-quantitative procedures that often characterize the “data to source” and the “residual to source” approaches; iii. quicken the source validation phase, accrediting the relevance of the source on the basis of the analysis results and before the modelling phase, differently from the “peering approach”, which validates the source on the basis of the model findings. The proposed procedure has been tested on the Po Delta (northern Italy), an area historically affected by land subsidence and recently interested by accurate continuous geodetic monitoring through GNSS stations. Daily-CGPS time series (three stations), weekly- CGPS time series (two stations) and seven sites of DInSAR-derived time series spanning over the time interval 2009 – 2017 constituted the used geodetic datasets. Several meteo/hydro parameters collected from fifty-seven stations and wide stratigraphic-geological information formed the base for the performed comparative analyses. From the application of the proposed procedure, it turns out that the periodic annual component highlighted in the continuous GPS stations is explained by two water mass-dependent processes: soil moisture mass change, which seems to control the ground level up-or-down lift in the southern part of the Delta, and the river water mass change, which influences the ground displacement in the central part of the Delta. As it concerns the permanent component, the lower rate found over 2012 - 2016 period in the central part of the Delta with respect to the eastern part is interpreted as due to the sediment compaction process of the Holocene prograding sequences and to the increase of rich-clay deposits

    Gaze-Based Human-Robot Interaction by the Brunswick Model

    Get PDF
    We present a new paradigm for human-robot interaction based on social signal processing, and in particular on the Brunswick model. Originally, the Brunswick model copes with face-to-face dyadic interaction, assuming that the interactants are communicating through a continuous exchange of non verbal social signals, in addition to the spoken messages. Social signals have to be interpreted, thanks to a proper recognition phase that considers visual and audio information. The Brunswick model allows to quantitatively evaluate the quality of the interaction using statistical tools which measure how effective is the recognition phase. In this paper we cast this theory when one of the interactants is a robot; in this case, the recognition phase performed by the robot and the human have to be revised w.r.t. the original model. The model is applied to Berrick, a recent open-source low-cost robotic head platform, where the gazing is the social signal to be considered

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Urban Deformation Monitoring using Persistent Scatterer Interferometry and SAR tomography

    Get PDF
    This book focuses on remote sensing for urban deformation monitoring. In particular, it highlights how deformation monitoring in urban areas can be carried out using Persistent Scatterer Interferometry (PSI) and Synthetic Aperture Radar (SAR) Tomography (TomoSAR). Several contributions show the capabilities of Interferometric SAR (InSAR) and PSI techniques for urban deformation monitoring. Some of them show the advantages of TomoSAR in un-mixing multiple scatterers for urban mapping and monitoring. This book is dedicated to the technical and scientific community interested in urban applications. It is useful for choosing the appropriate technique and gaining an assessment of the expected performance. The book will also be useful to researchers, as it provides information on the state-of-the-art and new trends in this fiel

    Digital 3D documentation of cultural heritage sites based on terrestrial laser scanning

    Get PDF

    Biometric Systems

    Get PDF
    Because of the accelerating progress in biometrics research and the latest nation-state threats to security, this book's publication is not only timely but also much needed. This volume contains seventeen peer-reviewed chapters reporting the state of the art in biometrics research: security issues, signature verification, fingerprint identification, wrist vascular biometrics, ear detection, face detection and identification (including a new survey of face recognition), person re-identification, electrocardiogram (ECT) recognition, and several multi-modal systems. This book will be a valuable resource for graduate students, engineers, and researchers interested in understanding and investigating this important field of study

    Seventh Biennial Report : June 2003 - March 2005

    No full text
    • …
    corecore