3 research outputs found

    Artificial societies and information theory: modelling of sub system formation based on Luhmann's autopoietic theory

    Get PDF
    This thesis develops a theoretical framework for the generation of artificial societies. In particular it shows how sub-systems emerge when the agents are able to learn and have the ability to communicate. This novel theoretical framework integrates the autopoietic hypothesis of human societies, formulated originally by the German sociologist Luhmann, with concepts of Shannon's information theory applied to adaptive learning agents. Simulations were executed using Multi-Agent-Based Modelling (ABM), a relatively new computational modelling paradigm involving the modelling of phenomena as dynamical systems of interacting agents. The thesis in particular, investigates the functions and properties necessary to reproduce the paradigm of society by using the mentioned ABM approach. Luhmann has proposed that in society subsystems are formed to reduce uncertainty. Subsystems can then be composed by agents with a reduced behavioural complexity. For example in society there are people who produce goods and other who distribute them. Both the behaviour and communication is learned by the agent and not imposed. The simulated task is to collect food, keep it and eat it until sated. Every agent communicates its energy state to the neighbouring agents. This results in two subsystems whereas agents in the first collect food and in the latter steal food from others. The ratio between the number of agents that belongs to the first system and to the second system, depends on the number of food resources. Simulations are in accordance with Luhmann, who suggested that adaptive agents self-organise by reducing the amount of sensory information or, equivalently, reducing the complexity of the perceived environment from the agent's perspective. Shannon's information theorem is used to assess the performance of the simulated learning agents. A practical measure, based on the concept of Shannon's information ow, is developed and applied to adaptive controllers which use Hebbian learning, input correlation learning (ICO/ISO) and temporal difference learning. The behavioural complexity is measured with a novel information measure, called Predictive Performance, which is able to measure at a subjective level how good an agent is performing a task. This is then used to quantify the social division of tasks in a social group of honest, cooperative food foraging, communicating agents

    Contemporary Robotics

    Get PDF
    This book book is a collection of 18 chapters written by internationally recognized experts and well-known professionals of the field. Chapters contribute to diverse facets of contemporary robotics and autonomous systems. The volume is organized in four thematic parts according to the main subjects, regarding the recent advances in the contemporary robotics. The first thematic topics of the book are devoted to the theoretical issues. This includes development of algorithms for automatic trajectory generation using redudancy resolution scheme, intelligent algorithms for robotic grasping, modelling approach for reactive mode handling of flexible manufacturing and design of an advanced controller for robot manipulators. The second part of the book deals with different aspects of robot calibration and sensing. This includes a geometric and treshold calibration of a multiple robotic line-vision system, robot-based inline 2D/3D quality monitoring using picture-giving and laser triangulation, and a study on prospective polymer composite materials for flexible tactile sensors. The third part addresses issues of mobile robots and multi-agent systems, including SLAM of mobile robots based on fusion of odometry and visual data, configuration of a localization system by a team of mobile robots, development of generic real-time motion controller for differential mobile robots, control of fuel cells of mobile robots, modelling of omni-directional wheeled-based robots, building of hunter- hybrid tracking environment, as well as design of a cooperative control in distributed population-based multi-agent approach. The fourth part presents recent approaches and results in humanoid and bioinspirative robotics. It deals with design of adaptive control of anthropomorphic biped gait, building of dynamic-based simulation for humanoid robot walking, building controller for perceptual motor control dynamics of humans and biomimetic approach to control mechatronic structure using smart materials
    corecore