5 research outputs found

    The optimal control of power electronic embedded networks in More Electric Aircraft

    Get PDF
    With the advancement of power electronic technologies over recent decades, there has been an overall increase in the utilisation of distributed generation and power electronic embedded networks in a large sphere of applications. Probably one of the most prominent areas of utilisation of new power electronics embedded systems is the use in power networks onboard military and civilian aircraft. With environmental concerns and increased competition in the civil aviation sector, more aircraft manufactures are replacing and interfacing electrical alternatives over heavier, less efficient and costly pneumatic, hydraulic and mechanical systems. In these modern power systems, the increased proliferation of power electronic converters and distributed generation raises important issues in regards to the performance, stability and robustness between interfaced switching units. These phenomena, such as power electronic sub-system interactions, become even more prominent in micro-grid applications or other low voltage distribution systems where interfaced converters are in close proximity to one another. In More Electric Aircraft (MEA), these interfaced power electronic converters are connected to the same non-stiff low power AC grid, which further increases the interactive effects between converter sub-systems. If these effects are not properly taken into account, then external disturbances to the system at given operating conditions can result in degradation of the system performance, failure in meeting the operating requirements of the grid, or in the worst case, instability of the whole grid. With much research in the area of decreasing the size and weight of systems, there is much literature proposing optimisation methods which decrease the size of filters between interfacing converters. Whilst effectively decreasing the size of these systems, interactions between interfaced converters gets worse, and is often improperly accounted for. The work presented in this thesis proposes a novel approach to the decentralisation and optimisation of converter controls on a power electronics embedded power network. In order to account for the interactive dynamics between sub-systems in the environment of reduced passive filter networks, all the system dynamics including the interactive terms are modelled globally. An optimal controller design approach based on the H2 optimisation is proposed to synthesise and generate automatically the controller gains for each power electronic sub-system. H2 optimisation is a powerful tool, which not only allows the submission, optimisation and development of closed loop controls for large dynamic systems, but offers the ability to the user to construct the controller for given structures. This enables the development of decentralised controllers for every sub-system with intrinsic knowledge of the closed loop dynamics of every other interconnect sub-system. It is shown through simulation and by experimental validation that this novel approach to grid control optimisation not only can improve overall dynamic performance of all sub-systems over 15traditional methods of design, but can also intrinsically reduce or better yet mitigate against the interactive effects between all converters. In addition, this method of controller design will be shown to not only be scalable to expanding sizes of grids, but the Phase-locked loops (PLLs) integrated to grid connected devices can also be considered in the optimisation procedure. PLLs are widely known to further cause interactive behaviours between grid interfaced devices. Including this into the optimisation also has been validated experimentally to prevent interactions on the grid, and improve performance over traditional design methods. Adaptations to the controller are performed to ensure operation in variable frequency environments (as is common in MEA), as well as methods of single converter optimisation when interfacing to an unknown grid. Additionally some initial research towards an adaption of the H2 controller to incorporate robustness as well as performance into the optimisation procedure is presented with mathematical concepts shown through simulation

    Robust state estimation for the control of flexible robotic manipulators

    Get PDF
    In this thesis, a novel robust estimation strategy for observing the system state variables of robotic manipulators with distributed flexibility is established. Motivation for the derived approach stems from the observation that lightweight, high speed, and large workspace robotic manipulators often suffer performance degradation because of inherent structural compliance. This flexibility often results in persistent residual vibration, which must be damped before useful work can resume. Inherent flexibility in robotic manipulators, then, increases cycle times and shortens the operational lives of the robots. Traditional compensation techniques, those which are commonly used for the control of rigid manipulators, can only approach a fraction of the open-loop system bandwidth without inducing significant excitation of the resonant dynamics. To improve the performance of these systems, the structural flexibility cannot simply be ignored, as it is when the links are significantly stiff and approximate rigid bodies. One thus needs a model to design a suitable compensator for the vibration, but any model developed to correct this problem will contain parametric error. And in the case of very lightly damped systems, like flexible robotic manipulators, this error can lead to instability of the control system for even small errors in system parameters. This work presents a systematic solution for the problem of robust state estimation for flexible manipulators in the presence of parametric modeling error. The solution includes: 1) a modeling strategy, 2) sensor selection and placement, and 3) a novel, multiple model estimator. Modeling of the FLASHMan flexible gantry manipulator is accomplished using a developed hybrid transfer matrix / assumed modes method (TMM/AMM) approach to determine an accurate low-order state space representation of the system dynamics. This model is utilized in a genetic algorithm optimization in determining the placement of MEMs accelerometers for robust estimation and observability of the system’s flexible state variables. The initial estimation method applied to the task of determining robust state estimates under conditions of parametric modeling error was of a sliding mode observer type. Evaluation of the method through analysis, simulations and experiments showed that the state estimates produced were inadequate. This led to the development of a novel, multiple model adaptive estimator. This estimator utilizes a bank of similarly designed sub-estimators and a selection algorithm to choose the true value from a given set of possible system parameter values as well as the correct state vector estimate. Simulation and experimental results are presented which demonstrate the applicability and effectiveness of the derived method for the task of state variable estimation for flexible robotic manipulators.Ph.D

    The optimal control of power electronic embedded networks in More Electric Aircraft

    Get PDF
    With the advancement of power electronic technologies over recent decades, there has been an overall increase in the utilisation of distributed generation and power electronic embedded networks in a large sphere of applications. Probably one of the most prominent areas of utilisation of new power electronics embedded systems is the use in power networks onboard military and civilian aircraft. With environmental concerns and increased competition in the civil aviation sector, more aircraft manufactures are replacing and interfacing electrical alternatives over heavier, less efficient and costly pneumatic, hydraulic and mechanical systems. In these modern power systems, the increased proliferation of power electronic converters and distributed generation raises important issues in regards to the performance, stability and robustness between interfaced switching units. These phenomena, such as power electronic sub-system interactions, become even more prominent in micro-grid applications or other low voltage distribution systems where interfaced converters are in close proximity to one another. In More Electric Aircraft (MEA), these interfaced power electronic converters are connected to the same non-stiff low power AC grid, which further increases the interactive effects between converter sub-systems. If these effects are not properly taken into account, then external disturbances to the system at given operating conditions can result in degradation of the system performance, failure in meeting the operating requirements of the grid, or in the worst case, instability of the whole grid. With much research in the area of decreasing the size and weight of systems, there is much literature proposing optimisation methods which decrease the size of filters between interfacing converters. Whilst effectively decreasing the size of these systems, interactions between interfaced converters gets worse, and is often improperly accounted for. The work presented in this thesis proposes a novel approach to the decentralisation and optimisation of converter controls on a power electronics embedded power network. In order to account for the interactive dynamics between sub-systems in the environment of reduced passive filter networks, all the system dynamics including the interactive terms are modelled globally. An optimal controller design approach based on the H2 optimisation is proposed to synthesise and generate automatically the controller gains for each power electronic sub-system. H2 optimisation is a powerful tool, which not only allows the submission, optimisation and development of closed loop controls for large dynamic systems, but offers the ability to the user to construct the controller for given structures. This enables the development of decentralised controllers for every sub-system with intrinsic knowledge of the closed loop dynamics of every other interconnect sub-system. It is shown through simulation and by experimental validation that this novel approach to grid control optimisation not only can improve overall dynamic performance of all sub-systems over 15traditional methods of design, but can also intrinsically reduce or better yet mitigate against the interactive effects between all converters. In addition, this method of controller design will be shown to not only be scalable to expanding sizes of grids, but the Phase-locked loops (PLLs) integrated to grid connected devices can also be considered in the optimisation procedure. PLLs are widely known to further cause interactive behaviours between grid interfaced devices. Including this into the optimisation also has been validated experimentally to prevent interactions on the grid, and improve performance over traditional design methods. Adaptations to the controller are performed to ensure operation in variable frequency environments (as is common in MEA), as well as methods of single converter optimisation when interfacing to an unknown grid. Additionally some initial research towards an adaption of the H2 controller to incorporate robustness as well as performance into the optimisation procedure is presented with mathematical concepts shown through simulation

    Design and verification of Guidance, Navigation and Control systems for space applications

    Get PDF
    In the last decades, systems have strongly increased their complexity in terms of number of functions that can be performed and quantity of relationships between functions and hardware as well as interactions of elements and disciplines concurring to the definition of the system. The growing complexity remarks the importance of defining methods and tools that improve the design, verification and validation of the system process: effectiveness and costs reduction without loss of confidence in the final product are the objectives that have to be pursued. Within the System Engineering context, the modern Model and Simulation based approach seems to be a promising strategy to meet the goals, because it reduces the wasted resources with respect to the traditional methods, saving money and tedious works. Model Based System Engineering (MBSE) starts from the idea that it is possible at any moment to verify, through simulation sessions and according to the phase of the life cycle, the feasibility, the capabilities and the performances of the system. Simulation is used during the engineering process and can be classified from fully numerical (i.e. all the equipment and conditions are reproduced as virtual model) to fully integrated hardware simulation (where the system is represented by real hardware and software modules in their operational environment). Within this range of simulations, a few important stages can be defined: algorithm in the loop (AIL), software in the loop (SIL), controller in the loop (CIL), hardware in the loop (HIL), and hybrid configurations among those. The research activity, in which this thesis is inserted, aims at defining and validating an iterative methodology (based on Model and Simulation approach) in support of engineering teams and devoted to improve the effectiveness of the design and verification of a space system with particular interest in Guidance Navigation and Control (GNC) subsystem. The choice of focusing on GNC derives from the common interest and background of the groups involved in this research program (ASSET at Politecnico di Torino and AvioSpace, an EADS company). Moreover, GNC system is sufficiently complex (demanding both specialist knowledge and system engineer skills) and vital for whatever spacecraft and, last but not least the verification of its behavior is difficult on ground because strong limitations on dynamics and environment reproduction arise. Considering that the verification should be performed along the entire product life cycle, a tool and a facility, a simulator, independent from the complexity level of the test and the stage of the project, is needed. This thesis deals with the design of the simulator, called StarSim, which is the real heart of the proposed methodology. It has been entirely designed and developed from the requirements definition to the software implementation and hardware construction, up to the assembly, integration and verification of the first simulator release. In addition, the development of this technology met the modern standards on software development and project management. StarSim is a unique and self-contained platform: this feature allows to mitigate the risk of incompatibility, misunderstandings and loss of information that may arise using different software, simulation tools and facilities along the various phases. Modularity, flexibility, speed, connectivity, real time operation, fidelity with real world, ease of data management, effectiveness and congruence of the outputs with respect to the inputs are the sought-after features in the StarSim design. For every iteration of the methodology, StarSim guarantees the possibility to verify the behavior of the system under test thanks to the permanent availability of virtual models, that substitute all those elements not yet available and all the non-reproducible dynamics and environmental conditions. StarSim provides a furnished and user friendly database of models and interfaces that cover different levels of detail and fidelity, and supports the updating of the database allowing the user to create custom models (following few, simple rules). Progressively, pieces of the on board software and hardware can be introduced without stopping the process of design and verification, avoiding delays and loss of resources. StarSim has been used for the first time with the CubeSats belonging to the e-st@r program. It is an educational project carried out by students and researchers of the “CubeSat Team Polito” in which StarSim has been mainly used for the payload development, an Active Attitude Determination and Control System, but StarSim’s capabilities have also been updated to evaluate functionalities, operations and performances of the entire satellite. AIL, SIL, CIL, HIL simulations have been performed along all the phases of the project, successfully verifying a great number of functional and operational requirements. In particular, attitude determination algorithms, control laws, modes of operation have been selected and verified; software has been developed step by step and the bugs-free executable files have been loaded on the micro-controller. All the interfaces and protocols as well as data and commands handling have been verified. Actuators, logic and electrical circuits have been designed, built and tested and sensors calibration has been performed. Problems such as real time and synchronization have been solved and a complete hardware in the loop simulation test campaign both for A-ADCS standalone and for the entire satellite has been performed, verifying the satisfaction of a great number of CubeSat functional and operational requirements. The case study represents the first validation of the methodology with the first release of StarSim. It has been proven that the methodology is effective in demonstrating that improving the design and verification activities is a key point to increase the confidence level in the success of a space mission
    corecore