10,066 research outputs found

    Inhomogeneous extreme forms

    Get PDF
    G.F. Voronoi (1868-1908) wrote two memoirs in which he describes two reduction theories for lattices, well-suited for sphere packing and covering problems. In his first memoir a characterization of locally most economic packings is given, but a corresponding result for coverings has been missing. In this paper we bridge the two classical memoirs. By looking at the covering problem from a different perspective, we discover the missing analogue. Instead of trying to find lattices giving economical coverings we consider lattices giving, at least locally, very uneconomical ones. We classify local covering maxima up to dimension 6 and prove their existence in all dimensions beyond. New phenomena arise: Many highly symmetric lattices turn out to give uneconomical coverings; the covering density function is not a topological Morse function. Both phenomena are in sharp contrast to the packing problem.Comment: 22 pages, revision based on suggestions by referee, accepted in Annales de l'Institut Fourie

    Homological stability for classical groups

    Full text link
    We prove a slope 1 stability range for the homology of the symplectic, orthogonal and unitary groups with respect to the hyperbolic form, over any fields other than F2F_2, improving the known range by a factor 2 in the case of finite fields. Our result more generally applies to the automorphism groups of vector spaces equipped with a possibly degenerate form (in the sense of Bak, Tits and Wall). For finite fields of odd characteristic, and more generally fields in which -1 is a sum of two squares, we deduce a stability range for the orthogonal groups with respect to the Euclidean form, and a corresponding result for the unitary groups. In addition, we include an exposition of Quillen's unpublished slope 1 stability argument for the general linear groups over fields other than F2F_2, and use it to recover also the improved range of Galatius-Kupers-Randal-Williams in the case of finite fields, at the characteristic.Comment: v2: Revision. Now recovers the Galatius-Kupers-Randal-Williams improved stability range for general linear groups over finite field

    On the integrability of symplectic Monge-Amp\'ere equations

    Full text link
    Let u be a function of n independent variables x^1, ..., x^n, and U=(u_{ij}) the Hessian matrix of u. The symplectic Monge-Ampere equation is defined as a linear relation among all possible minors of U. Particular examples include the equation det U=1 governing improper affine spheres and the so-called heavenly equation, u_{13}u_{24}-u_{23}u_{14}=1, describing self-dual Ricci-flat 4-manifolds. In this paper we classify integrable symplectic Monge-Ampere equations in four dimensions (for n=3 the integrability of such equations is known to be equivalent to their linearisability). This problem can be reformulated geometrically as the classification of 'maximally singular' hyperplane sections of the Plucker embedding of the Lagrangian Grassmannian. We formulate a conjecture that any integrable equation of the form F(u_{ij})=0 in more than three dimensions is necessarily of the symplectic Monge-Ampere type.Comment: 20 pages; added more details of proof

    Generalising the Hardy-Littlewood Method for Primes

    Full text link
    The Hardy-Littlewood method is a well-known technique in analytic number theory. Among its spectacular applications are Vinogradov's 1937 result that every sufficiently large odd number is a sum of three primes, and a related result of Chowla and Van der Corput giving an asymptotic for the number of 3-term progressions of primes, all less than N. This article surveys recent developments of the author and T. Tao, in which the Hardy-Littlewood method has been generalised to obtain, for example, an asymptotic for the number of 4-term arithmetic progressions of primes less than N.Comment: 26 pages, submitted to Proceedings of ICM 200

    A brief introduction to Enriques surfaces

    Full text link
    This is a brief introduction to the theory of Enriques surfaces over arbitrary algebraically closed fields. Some new results about automorphism groups of Enriques surfaces are also included.Comment: Minor corrections, to appear in "Development of Moduli Theory---Kyoto 2013

    Neutrino Interactions in Hot and Dense Matter

    Get PDF
    We study the charged and neutral current weak interaction rates relevant for the determination of neutrino opacities in dense matter found in supernovae and neutron stars. We establish an efficient formalism for calculating differential cross sections and mean free paths for interacting, asymmetric nuclear matter at arbitrary degeneracy. The formalism is valid for both charged and neutral current reactions. Strong interaction corrections are incorporated through the in-medium single particle energies at the relevant density and temperature. The effects of strong interactions on the weak interaction rates are investigated using both potential and effective field-theoretical models of matter. We investigate the relative importance of charged and neutral currents for different astrophysical situations, and also examine the influence of strangeness-bearing hyperons. Our findings show that the mean free paths are significantly altered by the effects of strong interactions and the multi-component nature of dense matter. The opacities are then discussed in the context of the evolution of the core of a protoneutron star.Comment: 41 pages, 25 figure

    Bifurcations of piecewise smooth flows:perspectives, methodologies and open problems

    Get PDF
    In this paper, the theory of bifurcations in piecewise smooth flows is critically surveyed. The focus is on results that hold in arbitrarily (but finitely) many dimensions, highlighting significant areas where a detailed understanding is presently lacking. The clearest results to date concern equilibria undergoing bifurcations at switching boundaries, and limit cycles undergoing grazing and sliding bifurcations. After discussing fundamental concepts, such as topological equivalence of two piecewise smooth systems, discontinuity-induced bifurcations are defined for equilibria and limit cycles. Conditions for equilibria to exist in n-dimensions are given, followed by the conditions under which they generically undergo codimension-one bifurcations. The extent of knowledge of their unfoldings is also summarized. Codimension-one bifurcations of limit cycles and boundary-intersection crossing are described together with techniques for their classification. Codimension-two bifurcations are discussed with suggestions for further study

    Invisibility and Inverse Problems

    Full text link
    This survey of recent developments in cloaking and transformation optics is an expanded version of the lecture by Gunther Uhlmann at the 2008 Annual Meeting of the American Mathematical Society.Comment: 68 pages, 12 figures. To appear in the Bulletin of the AM
    corecore