7 research outputs found

    Efficient Continuous-Time SLAM for 3D Lidar-Based Online Mapping

    Full text link
    Modern 3D laser-range scanners have a high data rate, making online simultaneous localization and mapping (SLAM) computationally challenging. Recursive state estimation techniques are efficient but commit to a state estimate immediately after a new scan is made, which may lead to misalignments of measurements. We present a 3D SLAM approach that allows for refining alignments during online mapping. Our method is based on efficient local mapping and a hierarchical optimization back-end. Measurements of a 3D laser scanner are aggregated in local multiresolution maps by means of surfel-based registration. The local maps are used in a multi-level graph for allocentric mapping and localization. In order to incorporate corrections when refining the alignment, the individual 3D scans in the local map are modeled as a sub-graph and graph optimization is performed to account for drift and misalignments in the local maps. Furthermore, in each sub-graph, a continuous-time representation of the sensor trajectory allows to correct measurements between scan poses. We evaluate our approach in multiple experiments by showing qualitative results. Furthermore, we quantify the map quality by an entropy-based measure.Comment: In: Proceedings of the International Conference on Robotics and Automation (ICRA) 201

    Global 3D non-rigid registration of deformable objects using a single RGB-D camera

    Get PDF
    We present a novel global non-rigid registration method for dynamic 3D objects. Our method allows objects to undergo large non-rigid deformations, and achieves high quality results even with substantial pose change or camera motion between views. In addition, our method does not require a template prior and uses less raw data than tracking based methods since only a sparse set of scans is needed. We compute the deformations of all the scans simultaneously by optimizing a global alignment problem to avoid the well-known loop closure problem, and use an as-rigid-as-possible constraint to eliminate the shrinkage problem of the deformed shapes, especially near open boundaries of scans. To cope with large-scale problems, we design a coarse-to-fine multi-resolution scheme, which also avoids the optimization being trapped into local minima. The proposed method is evaluated on public datasets and real datasets captured by an RGB-D sensor. Experimental results demonstrate that the proposed method obtains better results than several state-of-the-art methods

    Sparse Non-rigid Registration of 3D Shapes

    Full text link
    Non-rigid registration of 3D shapes is an essential task of increasing importance as commodity depth sensors become more widely available for scanning dynamic scenes. Non-rigid registration is much more challenging than rigid registration as it estimates a set of local transformations instead of a single global transformation, and hence is prone to the overfitting issue due to underdetermination. The common wisdom in previous methods is to impose an â„“2-norm regularization on the local transformation differences. However, the â„“2-norm regularization tends to bias the solution towards outliers and noise with heavy-tailed distribution, which is verified by the poor goodness-of-fit of the Gaussian distribution over transformation differences. On the contrary, Laplacian distribution fits well with the transformation differences, suggesting the use of a sparsity prior. We propose a sparse non-rigid registration (SNR) method with an â„“1-norm regularized model for transformation estimation, which is effectively solved by an alternate direction method (ADM) under the augmented Lagrangian framework. We also devise a multi-resolution scheme for robust and progressive registration. Results on both public datasets and our scanned datasets show the superiority of our method, particularly in handling large-scale deformations as well as outliers and noise

    Highly accurate 3D surface models by sparse surface adjustment

    No full text
    In this paper, we propose an approach to obtain highly accurate 3D models from range data. The key idea of our method is to jointly optimize the poses of the sensor and the positions of the surface points measured with a range scanning device. Our approach applies a physical model of the underlying range sensor. To solve the optimization task it employs a state-of-the-art graph-based optimizer and iteratively refines the structure of the error function by recomputing the data associations after each optimization. We present our approach and evaluate it on data recorded in different real world environments with a RGBD camera and a laser range scanner. The experimental results demonstrate that our method is able to substantially improve the accuracy of SLAM results and that it compares favorable over the moving least squares method. © 2012 IEEE

    Highly accurate 3D surface models by sparse surface adjustment

    No full text
    Abstract—In this paper, we propose an approach to obtain highly accurate 3D models from range data. The key idea of our method is to jointly optimize the poses of the sensor and the positions of the surface points measured with a range scanning device. Our approach applies a physical model of the underlying range sensor. To solve the optimization task it employsastate-of-the-artgraph-basedoptimizeranditeratively refines the structure of the error function by recomputing the data associations after each optimization. We present our approach and evaluate it on data recorded in different real world environments with a RGBD camera and a laser range scanner. The experimental results demonstrate that our method is able to substantially improve the accuracy of SLAM results and that it compares favorable over the moving least squares method. I

    Advances in Simultaneous Localization and Mapping in Confined Underwater Environments Using Sonar and Optical Imaging.

    Full text link
    This thesis reports on the incorporation of surface information into a probabilistic simultaneous localization and mapping (SLAM) framework used on an autonomous underwater vehicle (AUV) designed for underwater inspection. AUVs operating in cluttered underwater environments, such as ship hulls or dams, are commonly equipped with Doppler-based sensors, which---in addition to navigation---provide a sparse representation of the environment in the form of a three-dimensional (3D) point cloud. The goal of this thesis is to develop perceptual algorithms that take full advantage of these sparse observations for correcting navigational drift and building a model of the environment. In particular, we focus on three objectives. First, we introduce a novel representation of this 3D point cloud as collections of planar features arranged in a factor graph. This factor graph representation probabalistically infers the spatial arrangement of each planar segment and can effectively model smooth surfaces (such as a ship hull). Second, we show how this technique can produce 3D models that serve as input to our pipeline that produces the first-ever 3D photomosaics using a two-dimensional (2D) imaging sonar. Finally, we propose a model-assisted bundle adjustment (BA) framework that allows for robust registration between surfaces observed from a Doppler sensor and visual features detected from optical images. Throughout this thesis, we show methods that produce 3D photomosaics using a combination of triangular meshes (derived from our SLAM framework or given a-priori), optical images, and sonar images. Overall, the contributions of this thesis greatly increase the accuracy, reliability, and utility of in-water ship hull inspection with AUVs despite the challenges they face in underwater environments. We provide results using the Hovering Autonomous Underwater Vehicle (HAUV) for autonomous ship hull inspection, which serves as the primary testbed for the algorithms presented in this thesis. The sensor payload of the HAUV consists primarily of: a Doppler velocity log (DVL) for underwater navigation and ranging, monocular and stereo cameras, and---for some applications---an imaging sonar.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120750/1/paulozog_1.pd

    Efficient 3D Segmentation, Registration and Mapping for Mobile Robots

    Get PDF
    Sometimes simple is better! For certain situations and tasks, simple but robust methods can achieve the same or better results in the same or less time than related sophisticated approaches. In the context of robots operating in real-world environments, key challenges are perceiving objects of interest and obstacles as well as building maps of the environment and localizing therein. The goal of this thesis is to carefully analyze such problem formulations, to deduce valid assumptions and simplifications, and to develop simple solutions that are both robust and fast. All approaches make use of sensors capturing 3D information, such as consumer RGBD cameras. Comparative evaluations show the performance of the developed approaches. For identifying objects and regions of interest in manipulation tasks, a real-time object segmentation pipeline is proposed. It exploits several common assumptions of manipulation tasks such as objects being on horizontal support surfaces (and well separated). It achieves real-time performance by using particularly efficient approximations in the individual processing steps, subsampling the input data where possible, and processing only relevant subsets of the data. The resulting pipeline segments 3D input data with up to 30Hz. In order to obtain complete segmentations of the 3D input data, a second pipeline is proposed that approximates the sampled surface, smooths the underlying data, and segments the smoothed surface into coherent regions belonging to the same geometric primitive. It uses different primitive models and can reliably segment input data into planes, cylinders and spheres. A thorough comparative evaluation shows state-of-the-art performance while computing such segmentations in near real-time. The second part of the thesis addresses the registration of 3D input data, i.e., consistently aligning input captured from different view poses. Several methods are presented for different types of input data. For the particular application of mapping with micro aerial vehicles where the 3D input data is particularly sparse, a pipeline is proposed that uses the same approximate surface reconstruction to exploit the measurement topology and a surface-to-surface registration algorithm that robustly aligns the data. Optimization of the resulting graph of determined view poses then yields globally consistent 3D maps. For sequences of RGBD data this pipeline is extended to include additional subsampling steps and an initial alignment of the data in local windows in the pose graph. In both cases, comparative evaluations show a robust and fast alignment of the input data
    corecore