3 research outputs found

    Multilevel Hierarchical Kernel Spectral Clustering for Real-Life Large Scale Complex Networks

    Full text link
    Kernel spectral clustering corresponds to a weighted kernel principal component analysis problem in a constrained optimization framework. The primal formulation leads to an eigen-decomposition of a centered Laplacian matrix at the dual level. The dual formulation allows to build a model on a representative subgraph of the large scale network in the training phase and the model parameters are estimated in the validation stage. The KSC model has a powerful out-of-sample extension property which allows cluster affiliation for the unseen nodes of the big data network. In this paper we exploit the structure of the projections in the eigenspace during the validation stage to automatically determine a set of increasing distance thresholds. We use these distance thresholds in the test phase to obtain multiple levels of hierarchy for the large scale network. The hierarchical structure in the network is determined in a bottom-up fashion. We empirically showcase that real-world networks have multilevel hierarchical organization which cannot be detected efficiently by several state-of-the-art large scale hierarchical community detection techniques like the Louvain, OSLOM and Infomap methods. We show a major advantage our proposed approach i.e. the ability to locate good quality clusters at both the coarser and finer levels of hierarchy using internal cluster quality metrics on 7 real-life networks.Comment: PLOS ONE, Vol 9, Issue 6, June 201

    Highly sparse reductions to kernel spectral clustering

    No full text
    Kernel spectral clustering is a model-based spectral clustering method formulated in a primal-dual framework. It has a powerful out-of-sample extension property and a model selection procedure based on the balanced line fit criterion. This paper is an improvement of a previous work which sparsified the kernel spectral clustering method using the line structure of the data projections in the eigenspace. However, the previous method works only in the case of well formed and well separated clusters as in other cases the line structure is lost. In this paper, we propose two highly sparse extensions of kernel spectral clustering that can overcome these limitations. For the selection of the reduced set we use the concept of angles between the data projections in the eigenspace. We show the effectiveness and the amount of sparsity obtained by the proposed methods for several synthetic and real world datasets. © Springer-Verlag 2013.status: publishe
    corecore