2 research outputs found

    Highly efficient voice—data integration over medium and high capacity wireless TDMA channels

    No full text
    A new medium access control (MAC) protocol for mobile wireless communications is presented and investigated. We explore, via an extensive simulation study, the performance of the protocol when integrating voice and data traffic over two wireless channels, one of medium capacity (referring mostly to outdoor microcellular environments) and one of high capacity (referring to an indoor microcellular environment). Data message arrivals are assumed to occur according to a Poisson process and to vary in length according to a geometric distribution. We evaluate the voice packet dropping probability and access delay, as well as the data packet access and data message transmission delays for various voice and data load conditions. By combining two novel ideas of ours with two useful ideas which have been proposed in other MAC schemes, we are able to remarkably improve the efficiency of a previously proposed MAC scheme [5], and obtain very high voice sources multiplexing results along with most satisfactory voice and data performance and quality of service (QoS) requirements servicing. Our two novel ideas are the sharing of certain request slots among voice and data terminals with priority given to voice, and the use of a fully dynamic low-voice-load mechanism

    Highly efficient voice—Data integration over medium and high capacity wireless TDMA channels

    No full text
    Δημοσίευση σε επιστημονικό περιοδικόSummarization: A new medium access control (MAC) protocol for mobile wireless communications is presented and investigated. We explore, via an extensive simulation study, the performance of the protocol when integrating voice and data traffic over two wireless channels, one of medium capacity (referring mostly to outdoor microcellular environments) and one of high capacity (referring to an indoor microcellular environment). Data message arrivals are assumed to occur according to a Poisson process and to vary in length according to a geometric distribution. We evaluate the voice packet dropping probability and access delay, as well as the data packet access and data message transmission delays for various voice and data load conditions. By combining two novel ideas of ours with two useful ideas which have been proposed in other MAC schemes, we are able to remarkably improve the efficiency of a previously proposed MAC scheme [5], and obtain very high voice sources multiplexing results along with most satisfactory voice and data performance and quality of service (QoS) requirements servicing. Our two novel ideas are the sharing of certain request slots among voice and data terminals with priority given to voice, and the use of a fully dynamic low-voice-load mechanism.Presented on: Wireless Network
    corecore